Linear Algebra Midterm 1 Spring 2020

Name:	ID:

Instructions:

- (1) Fill in your name and Washington University ID at the top of this cover sheet.
- (2) This exam is closed-book and closed-notes; no calculators, no phones.
- (3) Leave your answers in exact form (e.g. $\sqrt{2}$, not ≈ 1.4) and simplify them as much as possible (e.g. 1/2, not 2/4) to receive full credit.
- (4) Read each questions carefully. Answer all questions in the space provided. If you need more room use the blank backs of the pages.
- (5) Show your work; correct answers alone will receive only partial credit.
- (6) This exam has 5 extra credit points.

Problem	$\begin{array}{c}1\\(25 \text{ pts})\end{array}$	$\begin{array}{c} 2\\ (30 \text{ pts}) \end{array}$	$\begin{array}{c} 3 \\ (30 \text{ pts}) \end{array}$	$\begin{array}{c} 4 \\ (20 \text{ pts}) \end{array}$	Total (105 pts)
Score					

1. In each of the following cases determine whether the given set is a basis for \mathbb{R}^n :

(i)
$$n = 3$$
 and $S = \left\{ \begin{bmatrix} 2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}.$

(ii)
$$n = 4$$
 and $S = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\-2\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\0\\1\\0 \end{bmatrix} \right\}.$

(iii)
$$n = 3$$
 and $S = \left\{ \begin{bmatrix} 6\\0\\6 \end{bmatrix}, \begin{bmatrix} 5\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\4 \end{bmatrix}, \begin{bmatrix} 0\\7\\9 \end{bmatrix} \right\}.$

2. Suppose $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation given as T(x) = Ax where A is the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 1 & -1 \\ 1 & -3 & -4 & -1 \\ 1 & 0 & -1 & -1 \end{array} \right]$$

(i) Determine all vectors in $\ker(T)$.

(ii) Compute Nullity(T).

(iii) Compute $\operatorname{Rank}(T)$.

3. Recall that $M_{2\times 2}(\mathbb{R})$ denotes the vector space of 2×2 matrices. A standard basis for $M_{2\times 2}(\mathbb{R})$ is given as

$$S = \left\{ f_1 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], f_2 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], f_3 = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], f_4 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

(You don't need to show that S is a basis.) Suppose $R: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ is a map defined as

$$R\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = \left[\begin{array}{cc}2&-1\\0&0\end{array}\right]\cdot \left[\begin{array}{cc}a&b\\c&d\end{array}\right]$$

(i) Show that R is a linear map.

(ii) Write down the matrices $R(f_i)$ as a linear combination of the matrices in $S = \{f_1, f_2, f_3, f_4\}$.

(iii) Find the 4×4 matrix $[R]_S^S$, which is the matrix representation of R with respect to the basis S. (You should be able to find $[R]_S^S$ using your answer to part (ii).) 4. (i) Give a 1-dimensional subspace of

$$V = \left\{ A \in M_{2 \times 2}(\mathbb{R}) \mid A^t = A \right\}$$

Here A^t denotes the transpose of A. So V is the space of symmetric 2×2 matrices. You may give your answer as multiples of a vector in V. Justify why it is a 1-dimensional subspace.

(ii) Give a 2-dimensional subspace of

 $C(\mathbb{R},\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is a continuous function} \}.$

You may give your answer as linear combinations of two elements of $C(\mathbb{R},\mathbb{R})$. Justify why it is a 2-dimensional subspace.