Take-Home Exam II

1. Suppose the matrix A is given as

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & 2 & 5 \\
-4 & -3 & -14 & 1 & 1 \\
-6 & 2 & -6 & 4 & 0 \\
0 & 1 & 3 & 3 & 5
\end{array}\right]
$$

(i) Determine the rank of A.
(ii) Find a basis for the kernel of the linear transformation $T_{A}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ given by $T_{A}(\vec{x})=A \vec{x}$.
(iii) Describe the image of T_{A} as the set of solutions to a system of equations.
2. (i) Determine all values of s, t such that the following system has a unique solution:

$$
\left\{\begin{array}{l}
3 x+4 y=t \\
s x+y=-7
\end{array}\right.
$$

(ii) Determine all values of s, t such that the above system has no solution.
3. Consider the matrix Q given as

$$
Q=\left[\begin{array}{ccccc}
1 & 1 & 2 & 8 & 1 \\
-2 & -1 & -1 & -16 & -1 \\
1 & 0 & -2 & 14 & 0 \\
1 & 1 & 2 & 9 & 8 \\
1 & 1 & 2 & 8 & 2
\end{array}\right]
$$

(i) By computing the determinant of Q shows that the columns of Q form a basis \mathcal{S} of \mathbb{R}^{5}. Give the steps of computing the determinant.
(ii) Find the inverse matrix Q^{-1}.
(iii) Let $T_{A}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ be the linear transformation $T_{A}(\vec{x})=A \vec{x}$ where A is the matrix

$$
A=\left[\begin{array}{ccccc}
-6 & -1 & 2 & 0 & 1 \\
2 & 0 & -1 & -2 & 0 \\
1 & 0 & 2 & 0 & -1 \\
-2 & 1 & 0 & -3 & 1 \\
1 & 2 & 2 & 0 & -5
\end{array}\right]
$$

Find the matrix representation $\left[T_{A}\right]_{\mathcal{S}}$ of T_{A}.
4. The following information about a matrix B is given.

- The reduced row echelon form of B is equal to

$$
\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 & -4 \\
0 & 1 & 8 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- The matrix B maps the vector $\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 4 \\ 0\end{array}\right]$ to $\left[\begin{array}{c}1 \\ 14 \\ 4 \\ 7\end{array}\right]$;
- The matrix B maps the vector $\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ 0\end{array}\right]$ to $\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ 0\end{array}\right]$;
- The matrix B maps the vector $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 4 \\ 1 \\ 2\end{array}\right]$.
(i) Determine the row space of B.
(ii) Determine the column space of B.

5. Suppose \mathcal{P}_{n} denotes the space of all polynomials of degree at most n. That is to say, any element of \mathcal{P}_{n} can be written as:

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Let $T: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}$ be the map given by

$$
T(p)(x):=x p^{\prime}(x)+p^{\prime}(x)
$$

where $p(x) \in \mathcal{P}_{n}$. Find all eigenvalues of T. Then show that T is diagonalizable by finding a basis for \mathcal{P}_{4} which only consists of eigenvectors.
6. For each real number t, determine whether the following matrix is diagonalizable. Justify why you think the matrix is diagonalizable or non-diagonalizable. In the case that it is diagonalizable find the diagonal form.
$\left[\begin{array}{ccccc}t & 0 & 0 & 7 & -3 \\ 1 & 2 & 0 & 2 & 4 \\ 1 & 1 & 3 & -6 & 8 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 & 1\end{array}\right]$.
7. (a) Verify the following identity:

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & a_{4}
\end{array}\right]=\left(a_{1}-b_{1}\right)\left(a_{2}-b_{2}\right)\left(a_{3}-b_{3}\right) a_{4}
$$

(Hint: Using elementary row operations turn your matrix into a lower or upper triangular matrix.)
(b) Generalize the last part by finding a similar formula for the determinant of the following $n \times n$ matrix and justify your answer.

$$
\left[\begin{array}{cccccc}
a_{1} & a_{2} & \ldots & a_{n-2} & a_{n-1} & a_{n} \\
b_{1} & a_{2} & \ldots & a_{n-2} & a_{n-1} & a_{n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
b_{1} & b_{2} & \ldots & b_{n-2} & a_{n-1} & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n-2} & b_{n-1} & a_{n}
\end{array}\right]
$$

