Take-Home Exam I

1. Suppose $M \in M_{2\times 2}(\mathbb{R})$ is an arbitrary 2×2 matrix and $T_M : M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ is a map defined as

$$T_M\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = M \cdot \left[\begin{array}{cc}a&b\\c&d\end{array}\right] - \left[\begin{array}{cc}a&b\\c&d\end{array}\right] \cdot M$$

(i) Show that T_M is a linear map.

(ii) Show that T_M is not surjective for any choice of M.

(iii) Find an example of M such that the rank of T_M is equal to 2.

2. (i) Suppose \mathcal{D}_n denotes the following sets of matrices in $M_{n \times n}(\mathbb{R})$:

$$\mathcal{D}_n = \left\{ A = [a_{i,j}] \in M_{n \times n}(\mathbb{R}) \mid a_{i,j} = 0 \text{ if } i \neq j \text{ and } \sum_{i=1}^n a_{i,i} = 0 \right\}.$$

So \mathcal{D}_n is the set of diagonal matrices such that the sum of diagonal terms is equal to 0. Show that \mathcal{D}_n is a subspace of $M_{n \times n}(\mathbb{R})$. Find a basis for \mathcal{D}_n and determine its dimension.

(ii) Suppose S_n denotes the following sets of matrices in $M_{n \times n}(\mathbb{R})$:

$$S_n = \left\{ A = [a_{i,j}] \in M_{n \times n}(\mathbb{R}) \mid A = A^t, \sum_{i=1}^n a_{i,i} = 0 \right\}.$$

So S_n is the set of symmetric matrices such that the sum of diagonal terms is equal to 0. Show that S_n is a subspace of $M_{n \times n}(\mathbb{R})$. Find a basis for S_n and determine its dimension. (Hint: If you find it hard to answer the question for arbitrary n, firstly look at the problem for small values of n, and after finding a pattern consider the general case.) 3. Suppose \mathcal{P}_n denotes the space of all polynomials of degree at most n. That is to say, any element of \mathcal{P}_n can be written as:

$$a_0 + a_1 x + \dots + a_n x^n$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$. Then \mathcal{P}_n is a vector space with basis $S_n = \{1, x, \ldots, x^n\}$. (You don't need to prove this.) Let $T : \mathcal{P}_n \to \mathcal{P}_{n+1}$ be the map given by

$$T(p)(x) := (2x+1) \cdot p(x) + xp'(x) - \int_0^x p(s)ds$$

where $p(x) \in \mathcal{P}_n$. Find the matrix representation $[T]_{S_n}^{S_{n+1}}$ of the linear transformation T. (Hint: As in the last problem, if you find it hard to answer the question for arbitrary n, firstly look at the problem for small values of n, and after finding a pattern consider the general case.)