Take-Home Exam I

1. Suppose $M \in M_{2 \times 2}(\mathbb{R})$ is an arbitrary 2×2 matrix and $T_{M}: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ is a map defined as

$$
T_{M}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=M \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot M
$$

(i) Show that T_{M} is a linear map.
(ii) Show that T_{M} is not surjective for any choice of M.
(iii) Find an example of M such that the rank of T_{M} is equal to 2 .
2. (i) Suppose \mathcal{D}_{n} denotes the following sets of matrices in $M_{n \times n}(\mathbb{R})$:

$$
\mathcal{D}_{n}=\left\{A=\left[a_{i, j}\right] \in M_{n \times n}(\mathbb{R}) \mid a_{i, j}=0 \text { if } i \neq j \text { and } \sum_{i=1}^{n} a_{i, i}=0\right\}
$$

So \mathcal{D}_{n} is the set of diagonal matrices such that the sum of diagonal terms is equal to 0 . Show that \mathcal{D}_{n} is a subspace of $M_{n \times n}(\mathbb{R})$. Find a basis for \mathcal{D}_{n} and determine its dimension.
(ii) Suppose \mathcal{S}_{n} denotes the following sets of matrices in $M_{n \times n}(\mathbb{R})$:

$$
\mathcal{S}_{n}=\left\{A=\left[a_{i, j}\right] \in M_{n \times n}(\mathbb{R}) \mid A=A^{t}, \sum_{i=1}^{n} a_{i, i}=0\right\}
$$

So \mathcal{S}_{n} is the set of symmetric matrices such that the sum of diagonal terms is equal to 0 . Show that \mathcal{S}_{n} is a subspace of $M_{n \times n}(\mathbb{R})$. Find a basis for \mathcal{S}_{n} and determine its dimension. (Hint: If you find it hard to answer the question for arbitrary n, firstly look at the problem for small values of n, and after finding a pattern consider the general case.)
3. Suppose \mathcal{P}_{n} denotes the space of all polynomials of degree at most n. That is to say, any element of \mathcal{P}_{n} can be written as:

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then \mathcal{P}_{n} is a vector space with basis $S_{n}=\left\{1, x, \ldots, x^{n}\right\}$. (You don't need to prove this.) Let $T: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n+1}$ be the map given by

$$
T(p)(x):=(2 x+1) \cdot p(x)+x p^{\prime}(x)-\int_{0}^{x} p(s) d s
$$

where $p(x) \in \mathcal{P}_{n}$. Find the matrix representation $[T]_{S_{n}}^{S_{n+1}}$ of the linear transformation T. (Hint: As in the last problem, if you find it hard to answer the question for arbitrary n, firstly look at the problem for small values of n, and after finding a pattern consider the general case.)

