Homework X

1. Use a Taylor polynomial of degree 3 to approximate $\sqrt[5]{33}$.
2. Verify that $y(x)$ satisfies the differential equation, then find a value for the constant C for which $y(x)$
is a solution for the initial value problem. $y(x)=C e^{-x}+x-1, \quad\left\{\begin{array}{l}y^{\prime}=x-y \\ y(0)=5\end{array}\right.$
3. Find the solutions of the following initial value problems:
(a) $\left\{\begin{array}{l}y^{\prime}+\frac{3}{x} y=\frac{\cos (x)}{x^{3}} \\ y(\pi)=0\end{array}\right.$
(b) $\left\{\begin{array}{l}y^{\prime}=(1-y) \cos x \\ y(\pi)=2\end{array}\right.$
(c) $\left\{\begin{array}{l}y^{\prime}=x^{2} y^{2}-x+x^{2}-x y^{2} \\ y(2)=0\end{array}\right.$
4. The air in a room with volume $180 \mathrm{~m}^{3}$ contains 0.15% carbon dioxide initially. Fresher air with only 0.05% carbon dioxide flows into the room at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$ and the mixed air flows out at the same rate. Find the percentage of carbon dioxide in the room as a function of time. What happens in the long run?
