Homework V

1. Determine whether each integral is convergent or divergent. Evaluate those that are convergent:
(a) $\int_{5}^{\infty} x e^{x / 5} d x$. (Hint: You can decide based on the shape of the function without finding an anti-derivative for the integrand.)
(b) $\int_{-\infty}^{0} x e^{x / 5} d x$.
(c) $\int_{0}^{3} \frac{e^{t}}{e^{2 t}-1} d t .{ }^{(1)}$

[^0](d) $\int_{-\infty}^{\infty} \frac{e^{t}}{e^{2 t}+1} d t$.
(e) $\int_{1000}^{\infty} \sin (\theta) d \theta$.
(f) $\int_{0}^{10} \frac{1}{(x-5)^{2}} d x$.
(g) $\int_{0}^{10} \frac{1}{(x-5)^{\frac{1}{3}}} d x$.
2. Use the comparison theorem to show that the following integral is convergent:
$$
\int_{-\infty}^{\infty} \frac{|\sin x|}{1+x^{2}} d x
$$
3. Use the comparison theorem to show that the integral is divergent.
$$
\int_{0}^{1} \frac{e^{x^{2}}}{x^{2}} d x
$$

[^0]: ${ }^{(1)}$ This is Problem 1.(d) from Homework II. The integral in that problem was unintentionally improper. Now you know enough to solve this problem completely.

