Homework IX

1. Find the Taylor series of the function $f(x)=\cos (x)$, centered at the point $a=\frac{\pi}{3}$. Show that this Taylor series is equal to $\cos (x)$ for all values of x.
2. Use power series representations of functions to evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}$.
(b) $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{1+x-e^{x}}$
3. (a) Find a power series representation for the function $f(x)=x \sin \left(x^{5}\right)$ centered at 0 .
(b) Use part (a) to evaluate $f^{50}(0)$.
(c) Use part (a) to evaluate $f^{36}(0)$.
4. (a) Find a power series representation for the function $f(x)=e^{-x^{2}}$.
(b) Find a power series representation for the function $g(x)=\int_{0}^{x} e^{-t^{2}} d t$. Where is this representation valid?
(c) Use the last part to write a convergent series whose sum is equal to $\int_{0}^{10} e^{-t^{2}} d t$.
(d) We use the sum of the first 5 terms of the series of the previous part to approximate the integral $\int_{0}^{10} e^{-t^{2}} d t$. Can you give an upper bound for the error of this approximation? (Hint: Use alternating series estimation Theorem.)
5. Use power series representations for functions that we studied in the class to evaluate the following sums:
(a) $\sum_{n=0}^{\infty} \frac{1}{n!\cdot 3^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2^{n}}{n \cdot 3^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ (Hint: By taking the derivative of the power series representation of the function $\frac{1}{1-x}$ find a function which is equal to $\sum_{n=1}^{\infty} n x^{n}$.)
(d) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ (Hint: Starting with the last part, find a function which is equal to $\sum_{n=1}^{\infty} n^{2} x^{n}$.)
