Calculus II Midterm 1 Fall 2018

Name:	ID:

Instructions:

- (1) Fill in your name and Columbia University ID at the top of this cover sheet.
- (2) This exam is closed-book and closed-notes; no calculators, no phones.
- (3) Leave your answers in exact form (e.g. $\sqrt{2}$, not ≈ 1.4) and simplify them as much as possible (e.g. 1/2, not 2/4) to receive full credit.
- (4) Answer all questions in the space provided. If you need more room use the blank backs of the pages.
- (5) Show your work; correct answers alone will receive only partial credit.
- (6) This exam has 5 extra credit points.

Problem	$\begin{array}{c}1\\(10 \text{ pts})\end{array}$	$\begin{array}{c} 2 \\ (10 \text{ pts}) \end{array}$	3 (15 pts)	$\begin{array}{c} 4 \\ (15 \text{ pts}) \end{array}$	5 (15 pts)	$\begin{array}{c} 6 \\ (15 \text{ pts}) \end{array}$	$\begin{array}{c} 7 \\ (25 \text{ pts}) \end{array}$	Total (105 pts)
Score								

Evaluate the following integrals:

1.
$$\int \frac{3x-1}{x^2+x-6} \, dx$$

2. $\int e^x \sin(8x) \, dt$

$$3. \int_1^e \ln(x^3) \, dx$$

4. $\int x^3 \cos(x^2) \, dx$

5.
$$\int_0^{\frac{\pi}{6}} \sin^2(2x) \cos(x) \, dx$$

6. Sketch the region enclosed by the given curves and find its area:

$$x = y^4, \qquad y = \sqrt{x - 2}, \qquad y = 0$$

- 7. Let \mathcal{R} be the region enclosed by the curve $x = y^2 4y + 8$ and the line y = x 2.
 - (a) Find the intersection points of the curve $x = y^2 4y + 8$ and the line y = x 2. Sketch the shape of \mathcal{R} .

(b) Let \mathcal{S} be the solid given by rotating the region \mathcal{R} about the x-axis. Find the volume of \mathcal{S} .

(c) Let \mathcal{T} be the solid given by rotating the region \mathcal{R} about the horizontal line x = 3. Find the volume of \mathcal{T} .