Calculus II
 Midterm 1 Fall 2018

Name: \qquad ID: \qquad

Instructions:

(1) Fill in your name and Columbia University ID at the top of this cover sheet.
(2) This exam is closed-book and closed-notes; no calculators, no phones.
(3) Leave your answers in exact form (e.g. $\sqrt{2}$, not ≈ 1.4) and simplify them as much as possible (e.g. $1 / 2$, not $2 / 4$) to receive full credit.
(4) Answer all questions in the space provided. If you need more room use the blank backs of the pages.
(5) Show your work; correct answers alone will receive only partial credit.
(6) This exam has 5 extra credit points.

Problem	1 $(10 \mathrm{pts})$	2 $(10 \mathrm{pts})$	3 $(10 \mathrm{pts})$	4 $(10 \mathrm{pts})$	5 $(10 \mathrm{pts})$	6 $(10 \mathrm{pts})$	7 $(15 \mathrm{pts})$	8 $(25 \mathrm{pts})$	Total $(100 \mathrm{pts})$
Score									

Evaluate the following integrals. Each part worths 10 points:

1. $\int_{0}^{1} \frac{\arctan ^{2}(x)+1}{x^{2}+1} d x$

Solution. We use u-substitution where $u=\arctan (x)$. Then $d u=\frac{1}{x^{2}+1} d x$ and we have:

$$
\begin{aligned}
\int_{0}^{1} \frac{\arctan ^{2}(x)+1}{x^{2}+1} d x & =\int_{\arctan (0)}^{\arctan (1)} u^{2}+1 d u \\
& =\int_{0}^{\frac{\pi}{4}} u^{2}+1 d u \\
& =\frac{u^{3}}{3}+\left.u\right|_{0} ^{\frac{\pi}{4}} \\
& =\frac{\left(\frac{\pi}{4}\right)^{3}}{3}+\frac{\pi}{4} \\
& =\frac{\pi^{3}}{192}+\frac{\pi}{4}
\end{aligned}
$$

2. $\int e^{3 t} \cos (2 t) d t$

Solution. We use integration by parts where $u=e^{3 t}$ and $d v=\cos (2 t) d t$. That implies that $d u=3 e^{3 t} d t$ and $v=\frac{\sin (2 t)}{2}$. Therefore, we have:

$$
\begin{align*}
\int e^{3 t} \cos (2 t) d t & =e^{3 t} \frac{\sin (2 t)}{2}-\int 3 e^{3 t} \frac{\sin (2 t)}{2} d t \\
& =e^{3 t} \frac{\sin (2 t)}{2}-\frac{3}{2} \int e^{3 t} \sin (2 t) d t \tag{1}
\end{align*}
$$

Then we apply integration by parts again to the integral in (1) where $u=e^{3 t}$ and $d v=\sin (2 t) d t$. We have $d u=3 e^{3 t} d t$ and $v=-\frac{\cos (2 t)}{2}$ which implies that:

$$
\begin{aligned}
e^{3 t} \frac{\sin (2 t)}{2}-\frac{3}{2} \int e^{3 t} \sin (2 t) d t & =e^{3 t} \frac{\sin (2 t)}{2}-\frac{3}{2}\left(-e^{3 t} \frac{\cos (2 t)}{2}-\int-3 e^{3 t} \frac{\cos (2 t)}{2} d t\right) \\
& \left.=e^{3 t} \frac{\sin (2 t)}{2}+\frac{3}{4} e^{3 t} \cos (2 t)-\frac{9}{4} \int e^{3 t} \cos (2 t) d t\right)
\end{aligned}
$$

In summary, we have:

$$
\left.\int e^{3 t} \cos (2 t) d t=e^{3 t} \frac{\sin (2 t)}{2}+\frac{3}{4} e^{3 t} \cos (2 t)-\frac{9}{4} \int e^{3 t} \cos (2 t) d t\right)
$$

which implies that:

$$
\begin{gathered}
\left(1+\frac{9}{4}\right) \int e^{3 t} \cos (2 t) d t=e^{3 t} \frac{\sin (2 t)}{2}+\frac{3}{4} e^{3 t} \cos (2 t) \Longrightarrow \\
\frac{13}{4} \int e^{3 t} \cos (2 t) d t=e^{3 t} \frac{\sin (2 t)}{2}+\frac{3}{4} e^{3 t} \cos (2 t) \Longrightarrow \\
\int e^{3 t} \cos (2 t) d t=\frac{2}{13} e^{3 t} \sin (2 t)+\frac{3}{13} e^{3 t} \cos (2 t)+C
\end{gathered}
$$

At the end, we included the arbitrary constant of integration, because our integral is indefinite.
3. $\int_{1}^{3} \frac{3 x+1}{x^{2}-2 x-15} d x$

Solution. The denominator of this fraction can be factorized as $(x-5)(x+3)$. Therefore, we can use partial fraction decomposition to compute this integral:

$$
\begin{gather*}
\frac{3 x+1}{x^{2}-2 x-15}=\frac{A}{x-5}+\frac{B}{x+3} \Longrightarrow \\
\frac{3 x+1}{x^{2}-2 x-15}=\frac{A(x+3)+B(x-5)}{(x-5)(x+3)} \Longrightarrow \\
3 x+1=A(x+3)+B(x-5) \tag{2}
\end{gather*}
$$

Identity (2) has to hold for all values of x. In particular, we can evaluate it at $x=5$ and $x=-3$:

$$
\begin{array}{cc}
x=5: & 3 \times 5+1=A(5+3)+B(5-5) \Longrightarrow \\
& 16=8 \times A \Longrightarrow A=2 \\
x=-3: & 3 \times(-3)+1=A(-3+3)+B(-3-5) \Longrightarrow \\
& -8=-8 \times B \Longrightarrow B=1
\end{array}
$$

In order to find A and B, we can follow the following alternative approach. The equation (2) can be rewritten as:

$$
\begin{aligned}
3 x+1= & (A+B) x+(3 A-5 B) \Longrightarrow \\
& \left\{\begin{array}{l}
A+B=3 \\
3 A-5 B=1
\end{array}\right.
\end{aligned}
$$

By multiplying the first equation by 5 and then adding it up to the second equation, we obtain:

$$
8 A=16 \Longrightarrow A=2
$$

Similarly, we can multiply the first equation by 3 and then subtract it from the second equation. This implies that:

$$
-8 B=-8 \Longrightarrow B=1
$$

In any case, we have:

$$
\begin{aligned}
\int_{1}^{3} \frac{3 x+1}{x^{2}-2 x-15} d x & =\int_{1}^{3} \frac{2}{x-5}+\frac{1}{x+3} d x \\
& =2 \ln (|x-5|)+\left.\ln (|x+3|)\right|_{1} ^{3} \\
& =(2 \ln (|3-5|)+\ln (|3+3|))-(2 \ln (|1-5|)+\ln (|1+3|)) \\
& =2 \ln (2)+\ln (6)-2 \ln (4)-\ln (4) \\
& =\ln \left(\frac{2^{2} \times 6}{4^{2} \times 4}\right) \\
& =\ln \left(\frac{3}{8}\right)
\end{aligned}
$$

4. $\int \sin ^{2}(x) \cos ^{4}(x) d x$

Solution. This integral can be solved using trigonometric identities:

$$
\begin{aligned}
\int \sin ^{2}(x) \cos ^{4}(x) d x & =\int(\sin (x) \cos (x))^{2} \cos ^{2}(x) d x \\
& =\int \frac{\sin ^{2}(2 x)}{4} \frac{1+\cos (2 x)}{2} d x \\
& =\int \frac{1-\cos (4 x)}{8} \frac{1+\cos (2 x)}{2} d x \\
& =\frac{1}{16} \int 1-\cos (4 x)+\cos (2 x)-\cos (4 x) \cos (2 x) d x \\
& =\frac{1}{16} \int 1-\cos (4 x)+\cos (2 x)-\frac{\cos (6 x)+\cos (2 x)}{2} d x \\
& =\frac{1}{32} \int 2-2 \cos (4 x)+\cos (2 x)-\cos (6 x) d x \\
& =\frac{1}{32}\left(2 x-\frac{\sin (4 x)}{2}+\frac{\sin (2 x)}{2}-\frac{\sin (6 x)}{6}\right)+C \\
& =\frac{x}{16}-\frac{\sin (4 x)}{64}+\frac{\sin (2 x)}{64}-\frac{\sin (6 x)}{192}+C
\end{aligned}
$$

5. $\int \frac{\cos (x) \sin (x)}{2-\cos (x)} d x$

Solution. We can use u-substitution with $u=\cos (x)$. Then $d u=-\sin (x) d x$ and we have:

$$
\int \frac{\cos (x) \sin (x)}{2-\cos (x)} d x=\int \frac{u}{u-2} d u
$$

The expression in inside the integral on the left hand side can be simplified as:

$$
\begin{equation*}
\frac{u}{u-2}=\frac{u-2+2}{u-2}=\frac{u-2}{u-2}+\frac{2}{u-2}=1+\frac{2}{u-2} \tag{3}
\end{equation*}
$$

Therefore, we can write::

$$
\begin{aligned}
\int \frac{u}{u-2} d u & =\int 1+\frac{2}{u-2} d u \\
& =\int 1 d u+2 \int \frac{1}{u-2} d u \\
& =u+2 \ln (|u-2|)+C \\
& =\cos (x)+2 \ln (2-\cos (x))+C
\end{aligned}
$$

In the last step, we plug in $\cos (x)$ for u.
6. $\int_{0}^{2} t^{3} e^{t^{2}} d t$

Solution. Firstly, use u-substitution with $u=t^{2}$. Then $d u=2 t d t$ and we have:

$$
\begin{aligned}
\int_{0}^{2} t^{3} e^{t^{2}} d t & =\int_{0^{2}}^{2^{2}} u e^{u} \frac{d u}{2} \\
& =\frac{1}{2} \int_{0}^{4} u e^{u} d u
\end{aligned}
$$

The latter integral can be computed using integration by parts. Let $r=u$ and $d s=e^{u} d u$. Then $r=d u$ and $s=e^{u}$, and we can rewrite the last expression as:

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{4} u e^{u} d u & =\frac{1}{2}\left(\left.u e^{u}\right|_{0} ^{4}-\int_{0}^{4} e^{u} d u\right) \\
& =\frac{1}{2}\left(4 \times e^{4}-0 \times e^{0}-\left.e^{u}\right|_{0} ^{4}\right) \\
& =\frac{1}{2}\left(4 e^{4}-e^{4}+e^{0}\right) \\
& =\frac{1}{2}\left(3 e^{4}+1\right)
\end{aligned}
$$

7. (15 points) Albert's boomerang has the shape of the region enclosed by the parabolas $y=x^{2}-3 x+3$ and $y=2 x^{2}-6 x+5$. Find the area of his boomerang.

Solution. Firstly, we need to find the intersection points of the two parabolas. If (x, y) lies on the graph of these two curves, then:

$$
\begin{gathered}
x^{2}-3 x+3=2 x^{2}-6 x+5 \Longrightarrow \\
0=x^{2}-3 x+2 \Longrightarrow \\
x=1,2
\end{gathered}
$$

Therefore, the two intersection points are $(1,1)$ and $(2,1)$. We slicing the region enclosed by the

two parabolas vertically. Therefore, we have to use the x-coordinate to parametrize our slices and the possible values of x lie in the interval [1,2]. For $x \in[1,2]$, the length of the slice is equal to $\left(x^{2}-3 x+3\right)-\left(2 x^{2}-6 x+5\right)=3 x-2-x^{2}$. (In order to see which graph is on top in the interval $[1,2]$, we can evaluate our functions at an arbitrary point in (1,2) like $\frac{3}{2}$.) Therefore, the area is equal to:

$$
\begin{aligned}
\int_{1}^{2} 3 x-2-x^{2} d x & =3 \frac{x^{2}}{2}-2 x-\left.\frac{x^{3}}{3}\right|_{1} ^{2} \\
& =\left(3 \times \frac{2^{2}}{2}-2 \times 2-\frac{2^{3}}{3}\right)-\left(3 \times \frac{1^{2}}{2}-2 \times 1-\frac{1^{3}}{3}\right) \\
& =\left(6-4-\frac{8}{3}\right)-\left(\frac{3}{2}-2-\frac{1}{3}\right) \\
& =\frac{1}{6}
\end{aligned}
$$

8. (25 points) Let \mathcal{R} be the region enclosed by the x-axis, y-axis, $x=\frac{\pi}{3}$, and the curve $y=\cos (x)$.
(a) Sketch the shape of this region in the coordinate plane.

Solution.

(b) Let \mathcal{S} be the solid given by rotating the region \mathcal{R} about the y-axis. Find the volume of \mathcal{S}.

Solution. We slice the region \mathcal{R} vertically. Thus we have to use the x-axis to parametrize our slices, and for each value of $x \in\left[0, \frac{\pi}{3}\right]$ we have a slice. Each such slice determines a cylindrical shell in the solid \mathcal{S}. The height of this shell is $\cos (x)$ and the radius is equal to x. Therefore, the volume of \mathcal{S} is equal to:

$$
\int_{0}^{\frac{\pi}{3}} 2 \pi x \cos (x) d x
$$

We can use integration by parts to compute this integral. Define the parts by $u=2 \pi x$ and $d v=\cos (x) d x$. Therefore, we have $d u=2 \pi d x$ and $v=\sin (x)$:

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} 2 \pi x \cos (x) d x & =\left.2 \pi x \sin (x)\right|_{0} ^{\frac{\pi}{3}}-\int_{0}^{\frac{\pi}{3}} 2 \pi \sin (x) d x \\
& =2 \pi \frac{\pi}{3} \sin \left(\frac{\pi}{3}\right)-2 \pi \times 0 \sin (0)-\left(-\left.2 \pi \cos (x)\right|_{0} ^{\frac{\pi}{3}}\right) \\
& =2 \frac{\pi^{2}}{3} \frac{\sqrt{3}}{2}+2 \pi \cos \left(\frac{\pi}{3}\right)-2 \pi \cos (0) \\
& =\frac{\sqrt{3} \pi^{2}}{3}+2 \pi \frac{1}{2}-2 \pi \\
& =\frac{\sqrt{3} \pi^{2}}{3}-\pi
\end{aligned}
$$

(c) Let \mathcal{T} be the solid given by rotating the region \mathcal{R} about the horizontal line $y=2$. Find the volume of \mathcal{T}.

Solution. We slice the region \mathcal{R} vertically again and for each $x \in\left[0, \frac{\pi}{3}\right]$ we obtain one slice. However, such slice in this case gives rise to a washer because we are rotating a vertical slice about a horizontal line. The inner radius of each slice $2-\cos (x)$ and the outer radius is equal to 2. Therefore, volume of a slice with thickness Δx at the point $x \in\left[0, \frac{\pi}{3}\right]$:

$$
\left(\pi 2^{2}-\pi(2-\cos (x))^{2}\right) \Delta x
$$

Therefore, the volume of the solid is equal to:

$$
\begin{align*}
\int_{0}^{\frac{\pi}{3}}\left(\pi 2^{2}-\pi(2-\cos (x))^{2}\right) d x & =\int_{0}^{\frac{\pi}{3}}\left(4 \pi-\pi\left(4-4 \cos (x)-\cos (x)^{2}\right)\right) d x \\
& =\int_{0}^{\frac{\pi}{3}} 4 \pi \cos (x)-\pi \cos (x)^{2} d x \\
& =4 \pi \int_{0}^{\frac{\pi}{3}} \cos (x) d x-\pi \int_{0}^{\frac{\pi}{3}} \cos (x)^{2} d x \\
& =\left.4 \pi \sin (x)\right|_{0} ^{\frac{\pi}{3}}-\pi \int_{0}^{\frac{\pi}{3}} \frac{1+\cos (2 x)}{2} d x \\
& =4 \pi \sin \left(\frac{\pi}{3}\right)-4 \pi \sin (0)-\frac{\pi}{2} \int_{0}^{\frac{\pi}{3}} 1 d x-\frac{\pi}{2} \int_{0}^{\frac{\pi}{3}} \cos (2 x) d x \\
& =4 \pi \frac{\sqrt{3}}{2}-\frac{\pi}{2} \frac{\pi}{3}-\frac{\pi}{2} \int_{2 \times 0}^{2 \times \frac{\pi}{3}} \cos (u) \frac{d u}{2} \tag{4}\\
& =4 \pi \frac{\sqrt{3}}{2}-\frac{\pi^{2}}{6}-\frac{\pi}{4}\left(\left.\sin (u)\right|_{0} ^{\frac{2 \pi}{3}}\right) \\
& =4 \pi \frac{\sqrt{3}}{2}-\frac{\pi^{2}}{6}-\frac{\pi}{4}\left(\sin \left(\frac{2 \pi}{3}\right)-\sin (0)\right) \\
& =4 \pi \frac{\sqrt{3}}{2}-\frac{\pi^{2}}{6}-\frac{\pi}{4} \frac{\sqrt{3}}{2} \\
& =15 \pi \frac{\sqrt{3}}{8}-\frac{\pi^{2}}{6}
\end{align*}
$$

In step (4), we use integration by substitution with $u=2 x$

