
Calculus II
Midterm 1 Fall 2018

Name: ID:

Instructions:

(1) Fill in your name and Columbia University ID at the top of this cover sheet.

(2) This exam is closed-book and closed-notes; no calculators, no phones.

(3) Leave your answers in exact form (e.g.
√

2, not ≈ 1.4) and simplify them as much as possible (e.g.
1/2, not 2/4) to receive full credit.

(4) Answer all questions in the space provided. If you need more room use the blank backs of the pages.

(5) Show your work; correct answers alone will receive only partial credit.

(6) This exam has 5 extra credit points.

Problem 1 2 3 4 5 6 7 8 Total
(10 pts) (10 pts) (10 pts) (10 pts) (10 pts) (10 pts) (15 pts) (25 pts) (100 pts)

Score
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Evaluate the following integrals. Each part worths 10 points:

1.

∫ 1

0

arctan2(x) + 1

x2 + 1
dx

Solution. We use u-substitution where u = arctan(x). Then du = 1
x2+1dx and we have:∫ 1

0

arctan2(x) + 1

x2 + 1
dx =

∫ arctan(1)

arctan(0)

u2 + 1 du

=

∫ π
4

0

u2 + 1 du

=
u3

3
+ u|

π
4
0

=
(π4 )3

3
+
π

4

=
π3

192
+
π

4
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2.

∫
e3t cos(2t) dt

Solution. We use integration by parts where u = e3t and dv = cos(2t)dt. That implies that du = 3e3tdt

and v = sin(2t)
2 . Therefore, we have:∫

e3t cos(2t) dt = e3t
sin(2t)

2
−
∫

3e3t
sin(2t)

2
dt

= e3t
sin(2t)

2
− 3

2

∫
e3t sin(2t) dt (1)

Then we apply integration by parts again to the integral in (1) where u = e3t and dv = sin(2t)dt. We

have du = 3e3tdt and v = − cos(2t)
2 which implies that:

e3t
sin(2t)

2
− 3

2

∫
e3t sin(2t) dt = e3t

sin(2t)

2
− 3

2
(−e3t cos(2t)

2
−
∫
−3e3t

cos(2t)

2
dt)

= e3t
sin(2t)

2
+

3

4
e3t cos(2t)− 9

4

∫
e3t cos(2t) dt)

In summary, we have:∫
e3t cos(2t) dt = e3t

sin(2t)

2
+

3

4
e3t cos(2t)− 9

4

∫
e3t cos(2t) dt)

which implies that:

(1 +
9

4
)

∫
e3t cos(2t) dt = e3t

sin(2t)

2
+

3

4
e3t cos(2t) =⇒

13

4

∫
e3t cos(2t) dt = e3t

sin(2t)

2
+

3

4
e3t cos(2t) =⇒∫

e3t cos(2t) dt =
2

13
e3t sin(2t) +

3

13
e3t cos(2t) + C

At the end, we included the arbitrary constant of integration, because our integral is indefinite.
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3.

∫ 3

1

3x+ 1

x2 − 2x− 15
dx

Solution. The denominator of this fraction can be factorized as (x− 5)(x+ 3). Therefore, we can use
partial fraction decomposition to compute this integral:

3x+ 1

x2 − 2x− 15
=

A

x− 5
+

B

x+ 3
=⇒

3x+ 1

x2 − 2x− 15
=
A(x+ 3) +B(x− 5)

(x− 5)(x+ 3)
=⇒

3x+ 1 = A(x+ 3) +B(x− 5) (2)

Identity (2) has to hold for all values of x. In particular, we can evaluate it at x = 5 and x = −3:

x = 5 : 3× 5 + 1 = A(5 + 3) +B(5− 5) =⇒

16 = 8×A =⇒ A = 2

x = −3 : 3× (−3) + 1 = A(−3 + 3) +B(−3− 5) =⇒

−8 = −8×B =⇒ B = 1

In order to find A and B, we can follow the following alternative approach. The equation (2) can be
rewritten as:

3x+ 1 = (A+B)x+ (3A− 5B) =⇒{
A+B = 3
3A− 5B = 1

By multiplying the first equation by 5 and then adding it up to the second equation, we obtain:

8A = 16 =⇒ A = 2.

Similarly, we can multiply the first equation by 3 and then subtract it from the second equation. This
implies that:

−8B = −8 =⇒ B = 1.

In any case, we have:∫ 3

1

3x+ 1

x2 − 2x− 15
dx =

∫ 3

1

2

x− 5
+

1

x+ 3
dx

= 2 ln(|x− 5|) + ln(|x+ 3|)|31
= (2 ln(|3− 5|) + ln(|3 + 3|))− (2 ln(|1− 5|) + ln(|1 + 3|))
= 2 ln(2) + ln(6)− 2 ln(4)− ln(4)

= ln(
22 × 6

42 × 4
)

= ln(
3

8
)
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4.

∫
sin2(x) cos4(x) dx

Solution. This integral can be solved using trigonometric identities:∫
sin2(x) cos4(x) dx =

∫
(sin(x) cos(x))2 cos2(x) dx

=

∫
sin2(2x)

4

1 + cos(2x)

2
dx

=

∫
1− cos(4x)

8

1 + cos(2x)

2
dx

=
1

16

∫
1− cos(4x) + cos(2x)− cos(4x) cos(2x) dx

=
1

16

∫
1− cos(4x) + cos(2x)− cos(6x) + cos(2x)

2
dx

=
1

32

∫
2− 2 cos(4x) + cos(2x)− cos(6x) dx

=
1

32

(
2x− sin(4x)

2
+

sin(2x)

2
− sin(6x)

6

)
+ C

=
x

16
− sin(4x)

64
+

sin(2x)

64
− sin(6x)

192
+ C
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5.

∫
cos(x) sin(x)

2− cos(x)
dx

Solution. We can use u-substitution with u = cos(x). Then du = − sin(x)dx and we have:∫
cos(x) sin(x)

2− cos(x)
dx =

∫
u

u− 2
du

The expression in inside the integral on the left hand side can be simplified as:

u

u− 2
=
u− 2 + 2

u− 2
=
u− 2

u− 2
+

2

u− 2
= 1 +

2

u− 2
(3)

Therefore, we can write:: ∫
u

u− 2
du =

∫
1 +

2

u− 2
du

=

∫
1 du+ 2

∫
1

u− 2
du

= u+ 2 ln(|u− 2|) + C

= cos(x) + 2 ln(2− cos(x)) + C

In the last step, we plug in cos(x) for u.
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6.

∫ 2

0

t3et
2

dt

Solution. Firstly, use u-substitution with u = t2. Then du = 2tdt and we have:∫ 2

0

t3et
2

dt =

∫ 22

02
ueu

du

2

=
1

2

∫ 4

0

ueu du

The latter integral can be computed using integration by parts. Let r = u and ds = eudu. Then
r = du and s = eu, and we can rewrite the last expression as:

1

2

∫ 4

0

ueu du =
1

2
(ueu|40 −

∫ 4

0

eu du)

=
1

2
(4× e4 − 0× e0 − eu|40)

=
1

2
(4e4 − e4 + e0)

=
1

2
(3e4 + 1)
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7. (15 points) Albert’s boomerang has the shape of the region enclosed by the parabolas y = x2 − 3x+ 3
and y = 2x2 − 6x+ 5. Find the area of his boomerang.

Solution. Firstly, we need to find the intersection points of the two parabolas. If (x,y) lies on the
graph of these two curves, then:

x2 − 3x+ 3 = 2x2 − 6x+ 5 =⇒

0 = x2 − 3x+ 2 =⇒

x = 1, 2

Therefore, the two intersection points are (1,1) and (2,1). We slicing the region enclosed by the

0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

6

7

two parabolas vertically. Therefore, we have to use the x-coordinate to parametrize our slices and
the possible values of x lie in the interval [1,2]. For x ∈ [1,2], the length of the slice is equal to
(x2−3x+ 3)− (2x2−6x+ 5) = 3x−2−x2. (In order to see which graph is on top in the interval [1,2],
we can evaluate our functions at an arbitrary point in (1,2) like 3

2 .) Therefore, the area is equal to:∫ 2

1

3x− 2− x2 dx = 3
x2

2
− 2x− x3

3
|21

= (3× 22

2
− 2× 2− 23

3
)− (3× 12

2
− 2× 1− 13

3
)

= (6− 4− 8

3
)− (

3

2
− 2− 1

3
)

=
1

6
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8. (25 points) Let R be the region enclosed by the x-axis, y-axis, x = π
3 , and the curve y = cos(x).

(a) Sketch the shape of this region in the coordinate plane.

Solution.

(b) Let S be the solid given by rotating the region R about the y-axis. Find the volume of S.

Solution. We slice the region R vertically. Thus we have to use the x-axis to parametrize our
slices, and for each value of x ∈ [0,π3 ] we have a slice. Each such slice determines a cylindrical
shell in the solid S. The height of this shell is cos(x) and the radius is equal to x. Therefore, the
volume of S is equal to: ∫ π

3

0

2πx cos(x) dx

We can use integration by parts to compute this integral. Define the parts by u = 2πx and
dv = cos(x)dx. Therefore, we have du = 2πdx and v = sin(x):∫ π

3

0

2πx cos(x) dx = 2πx sin(x)|
π
3
0 −

∫ π
3

0

2π sin(x) dx

= 2π
π

3
sin(

π

3
)− 2π × 0 sin(0)− (−2π cos(x)|

π
3
0 )

= 2
π2

3

√
3

2
+ 2π cos(

π

3
)− 2π cos(0)

=

√
3π2

3
+ 2π

1

2
− 2π

=

√
3π2

3
− π

(c) Let T be the solid given by rotating the region R about the horizontal line y = 2. Find the
volume of T .

Solution. We slice the region R vertically again and for each x ∈ [0,π3 ] we obtain one slice.
However, such slice in this case gives rise to a washer because we are rotating a vertical slice
about a horizontal line. The inner radius of each slice 2− cos(x) and the outer radius is equal to
2. Therefore, volume of a slice with thickness ∆x at the point x ∈ [0,π3 ]:

(π22 − π(2− cos(x))2)∆x
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Therefore, the volume of the solid is equal to:∫ π
3

0

(π22 − π(2− cos(x))2) dx =

∫ π
3

0

(4π − π(4− 4 cos(x)− cos(x)2)) dx

=

∫ π
3

0

4π cos(x)− π cos(x)2 dx

= 4π

∫ π
3

0

cos(x) dx− π
∫ π

3

0

cos(x)2 dx

= 4π sin(x)|
π
3
0 − π

∫ π
3

0

1 + cos(2x)

2
dx

= 4π sin(
π

3
)− 4π sin(0)− π

2

∫ π
3

0

1 dx− π

2

∫ π
3

0

cos(2x) dx

= 4π

√
3

2
− π

2

π

3
− π

2

∫ 2×π
3

2×0

cos(u)
du

2
(4)

= 4π

√
3

2
− π2

6
− π

4
(sin(u)|

2π
3
0 )

= 4π

√
3

2
− π2

6
− π

4
(sin(

2π

3
)− sin(0))

= 4π

√
3

2
− π2

6
− π

4

√
3

2

= 15π

√
3

8
− π2

6

In step (4), we use integration by substitution with u = 2x

10


