Solids of Revolution

1. Find the volume of a pyramid whose base is a square with side $5 \,\mathrm{m}$ and its height is equal to $9 \,\mathrm{m}$.

2. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ on the interval [0,4].

3. Consider the region enclosed by the curve $y = \sqrt{x}$ and the lines $y = \frac{1}{10}x$ and x = 4. We rotate this region around the x-axis. Find the volume of this solid.

- 4. Let \mathcal{R} be the region enclosed by the curve $y = \sqrt{x}$ and the lines $y = \frac{1}{10}x$ and x = 4.
 - (a) We rotate \mathcal{R} around the x-axis. Find the volume of this solid.

(b) We rotate \mathcal{R} around the line y = 3. Find the volume of this solid.

(c) Let \mathcal{R}' be the region enclosed by the curve $y = \sqrt{x}$ and the line $y = \frac{1}{10}x$. We rotate \mathcal{R}' around the line x = -2. Find the volume of this solid.

(d) We rotate \mathcal{R} around the line x = -1. Find the volume of this solid.

5. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = 2x^2 - x^3$ and the x-axis.