Solids of Revolution

1. Find the volume of a pyramid whose base is a square with side 5 m and its height is equal to 9 m .
2. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ on the interval $[0,4]$.
3. Consider the region enclosed by the curve $y=\sqrt{x}$ and the lines $y=\frac{1}{10} x$ and $x=4$. We rotate this region around the x-axis. Find the volume of this solid.
4. Let \mathcal{R} be the region enclosed by the curve $y=\sqrt{x}$ and the lines $y=\frac{1}{10} x$ and $x=4$.
(a) We rotate \mathcal{R} around the x-axis. Find the volume of this solid.
(b) We rotate \mathcal{R} around the line $y=3$. Find the volume of this solid.
(c) Let \mathcal{R}^{\prime} be the region enclosed by the curve $y=\sqrt{x}$ and the line $y=\frac{1}{10} x$. We rotate \mathcal{R}^{\prime} around the line $x=-2$. Find the volume of this solid.
(d) We rotate \mathcal{R} around the line $x=-1$. Find the volume of this solid.
5. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and the x-axis.
