Sequences and Series

1. Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is a function which is a constant function on each interval of the form $[i, i+1)$ and its value on this interval is equal to a_{i}.
(a) For each positive integer n evaluate the integral $\int_{0}^{n} f(x) d x$.
(b) When does the improper integral $\int_{0}^{n} f(x) d x$ exist? Interpret this improper integral as the sum of infinitely many numbers.
2. Does the sequence $a_{n}=\frac{n}{n^{2}+1}$ converge? If so, what is the limit?
3. Does the sequence $a_{n}=\frac{\ln (n)}{n}$ converge? If so, what is the limit?
4. Does the sequence $a_{n}=\sin \left(\frac{1}{n}\right)+\cos \left(\frac{\ln (n)}{n}\right)$ converge? If so, what is the limit?
5. Determine whether the series $\sum_{i=1}^{\infty} \frac{1}{2^{i}}$ is convergent or divergent? If it is convergent, what is the sum?
6. More generally, determine when the series $\sum_{i=0}^{\infty} a r^{i}$ is convergent and evaluate the series?
7. Write the number $2 . \overline{08}$ as the ratio of two positive integers.
8. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent or divergent? If it is convergent what is the sum?
