Sequences and Series

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{n-1}{n}$ is convergent or divergent?
2. Determine whether the series $\sum_{n=1}^{\infty} \frac{e^{n}+n}{e^{n}+1}$ is convergent or divergent?
3. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent or divergent? If it is convergent what is the sum?
4. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent or divergent? If it is convergent what is the sum?
5. For what values of p does the sequence $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge?
6. Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ by using the sum of the first 10 terms. Estimate the error involved in this approximation. How many terms are required to ensure that the sum is accurate to within 0.0005 ?
7. Is the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ convergent or divergent? How about the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{2}}$?
8. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}+\frac{1}{\pi^{n}}$ is convergent or divergent?
9. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1}$ is convergent or divergent?
