Comparison Test, Limit Comparison Test and Alternating Series

1. Determine whether the series $\sum_{i=1}^{\infty} \frac{1}{2^{i}+i}$ is convergent or divergent?
2. Show that the series $\sum_{n=10}^{\infty} \frac{1}{n}-\frac{1}{n-1}$ is convergent and find its value. Use this to give another proof that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
3. Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{3}}{n^{4}-2}$ is convergent or divergent?
4. Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ is convergent or divergent?
5. Determine whether the series $\sum_{n=1}^{\infty} \frac{n^{3}}{n^{4}+2}$ is convergent or divergent?
6. Determine whether the series $\sum_{n=1}^{\infty} \frac{3 n^{\frac{3}{2}}+5 n^{2}+7 n^{\frac{7}{2}}}{2 n^{2}+9}$ is convergent or divergent?
7. We use the sum of the first 100 terms of the series $\sum_{n=1}^{\infty} \frac{3^{n-1}}{7^{n}+5}$ to approximate the value of the series. Estimate the error involved in this approximation.
8. Show that the alternating harmonic series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ is convergent.
9. Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+1}$ is convergent or divergent?
10. Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n^{2}}{3 n^{2}-1}$ is convergent or divergent?
11. Approximate the sum of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!}$ with an error smaller than 10^{-3}.
