Power Series

1. Determine all values of x such that the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ is convergent.
2. Determine all values of x such that the power series $\sum_{n=1}^{\infty} n!x^{n}$ is convergent.
3. Determine all values of x such that the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3^{n}}(x+1)^{n}$ is convergent.
4. Determine all values of x such that the power series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n}$ is convergent.
5. (a) Express $\frac{1}{1+x}$ as the sum of a power series and find the interval of convergence.
(b) Express $\frac{1}{1+x^{3}}$ as the sum of a power series and find the interval of convergence.
(c) Express $\frac{1}{2+x^{3}}$ as the sum of a power series and find the interval of convergence.
(d) Express $\frac{x^{2}}{2+x^{3}}$ as the sum of a power series and find the interval of convergence.
6. Express $\frac{1}{(1-x)^{2}}$ as the sum of a power series and find the interval of convergence.
7. (a) Write a power series which is equal to the derivative of the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
(b) Show that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is equal to e^{x}.
8. Find a power series representation for $\ln (1+x)$.
