Taylor and Maclaurin Series

1. Find the sum of the power series $\sum_{i=1}^{\infty}(-1)^{n-1} \frac{1}{n \cdot 2^{n}}$
2. (a) Find the Maclaurin series of the function e^{x}.
(b) Find the Taylor series of the function e^{x} centered at 1.
3. (a) Find the Maclaurin series of the function $\sin (x)$.
(b) Show that the Maclaurin series of $\sin (x)$ is a power series representation for $\sin (x)$ which is valid for all values of x.
4. Find the Maclaurin series of the function $\cos (x)$. Is it a power series representation for $\cos (x)$?
5. (a) Find a power series representation of $f(x)=x \sin (x)$.
(b) What is $f^{(31)}(0)$? How about $f^{(32)}(0)$?
6. (a) Find a power series representation of $f(x)=\cos \left(x^{6}\right)$.
(b) What is $f^{(100)}(0)$?
(c) What is $f^{(96)}(0)$?
7. (a) Approximate $\sqrt[3]{7}$ using a Taylor polynomial of degree 2 centered at $x=8$ for the function $f(x)=$ $\sqrt[3]{x}$
(b) How accurate is this approximation?
8. (a) What is the maximum error possible in using the Taylor polynomial of degree 5 centered at 0 in approximating the function $\sin (x)$ when $-0.3 \leq x \leq 0.3$? Use this approximation to find $\sin (0.1)$ correct to six decimal places.
(b) For what values of x is this approximation accurate to within 0.00005 ?
