Taylor and Maclaurin Series

1. Find the sum of the power series
$$\sum_{i=1}^{\infty} (-1)^{n-1} \frac{1}{n \cdot 2^n}$$

- 2. (a) Find the Maclaurin series of the function e^x .
 - (b) Find the Taylor series of the function e^x centered at 1.
- 3. (a) Find the Maclaurin series of the function $\sin(x)$.
 - (b) Show that the Maclaurin series of sin(x) is a power series representation for sin(x) which is valid for all values of x.
- 4. Find the Maclaurin series of the function $\cos(x)$. Is it a power series representation for $\cos(x)$?
- 5. (a) Find a power series representation of $f(x) = x \sin(x)$.
 - (b) What is $f^{(31)}(0)$? How about $f^{(32)}(0)$?
- 6. (a) Find a power series representation of $f(x) = \cos(x^6)$.

- (b) What is $f^{(100)}(0)$?
- (c) What is $f^{(96)}(0)$?
- 7. (a) Approximate $\sqrt[3]{7}$ using a Taylor polynomial of degree 2 centered at x = 8 for the function $f(x) = \sqrt[3]{x}$.

(b) How accurate is this approximation?

8. (a) What is the maximum error possible in using the Taylor polynomial of degree 5 centered at 0 in approximating the function $\sin(x)$ when $-0.3 \le x \le 0.3$? Use this approximation to find $\sin(0.1)$ correct to six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?