
Lectures 1 & 2

1 What are Knots and Links?

Before giving the definition of the main objects of interest for us, we introduce some standard notations.
The standard n-dimensional Euclidean space is denoted by Rn. The standard n-dimensional ball Bn

consists of points x in Rn with |x| ă 1, where | ¨ | denotes the standard Euclidean norm on Rn. The
n-dimensional sphere is defined to be the boundary of the pn` 1q-dimensional ball, i.e., the set of points
x in Rn`1 with |x| “ 1. Removing a point from Sn produces a space which is homeomorphic (in fact,
diffeomorphic) to Rn.

Definition 1.1. A knot K is a smooth embedding of S1 into S3. More generally, a link L with n
connected components is an embedding of S1 \ ¨ ¨ ¨ \ S1

looooooomooooooon

n

into S3. A link is oriented if an orientation for

each of its connected components is fixed.

Definition 1.2. We say two knots K, K 1 : S1 Ñ S3 are equivalent to each other, if there is an orientation-
preserving smooth map h : S3 Ñ S3 such that K 1 “ h ˝K. More generally, equivalence of two links
with n connected components is defined similarly.

Remark 1.3. According to this definition, a knot or a link is a map. However, we often think about a knot
or a link as the image of such maps, i.e., a subset of S3. One way to justify this is to notice that knots
with the same image are equivalent to each other. Soon we also do not distinguish between a knot and its
equivalence class with respect to the relation given in Definition 1.2. Since we are concerned with the
equivalence class of links, there is also no harm in replacing S3 with R3.

Remark 1.4. We defined knots, links and the equivalence of such objects in the smooth category. Alter-
natively, we can work in the PL (piecewise-linear) category. In this category, a knot K is a piecewise
linear closed curve in S3. Two knots K and K 1 are PL-equivalent if there is an orientation preserving
homeomorphism h : S3 Ñ S3 which maps K to K 1. The corresponding concepts for links with more
than one connected component is defined similarly. There is a one-to-one correspondence between the set
of PL knots modulo PL equivalences and set of smooth knots modulo smooth equivalence. We do not
give the proof of this fact here. But note that a similar claim does not hold in higher dimensions. (See, for
example, [Hae62].)

Both smooth and PL perspectives are useful in knot theory. Working in PL category gives a more
combinatorial flavor to knot theory, and algorithmic questions are more accessible in this category. On
the other hand, smooth category is more suitable for geometric methods in knot theory (e.g. hyperbolic
geometry and several versions of knot Floer homology theories). As far as this course is concerned,
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working in either category works for the most part. We usually make the choice that makes the exposition
easier.

Example 1.5. The simplest knot is the unknot U given in Figure 1a. A PL representative for the unknot
is given by the boundary of a triangle embedded in R3. Analogously, we may define the unlink with n
connected components as the boundary of three disjoint triangles embedded in R3. Figure 1b shows an
unlink with two connected components.

Example 1.6. Figures 2a and 2b show the two simplest knots after the unknot which are called trefoil
and the figure-eight knot.

There are several other ways to define equivalence relation between knots. Here we give the definitions
of other equivalence relations:

Definition 1.7. Suppose K Ă R3 is a link (in the PL sense) and T is an embedded triangle in R3 such
that the boundary of T consists of the edges e1, e2, e3. We assume that e1 is one of the line segments of
K and T does not intersect K otherwise. Let K 1 be the link which is obtained from K by removing e1
and adding e2 Y e3. Then we say K 1 is related to K by a ∆-move. In general, two links K and K 1 are
called ∆-equivalent, if there is a sequence of ∆-moves and inverse of ∆-moves which relates K to K 1.

Definition 1.8. Suppose K,K 1 Ă R3 are two links (in the PL sense). An ambient isotopy from K to
K 1 is a homeomorphism H : r0, 1s ˆR3 Ñ r0, 1s ˆR3 (again in the PL sense) such that it satisfies the
following properties:
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(i) Hpt, xq “ pt, htpxqq;

(ii) h0pxq “ x;

(iii) h1 maps K to K 1.

Proposition 1.9. ([BZ03, Proposition 1.10]) The following properties for two links K and K 1 (in the PL
sense) are equivalent to each other:

(i) K and K 1 are equivalent to each other;

(ii) K and K 1 are ambient isotopic to each other;

(iii) K and K 1 are ∆-equivalent to each other.

Definition 1.10. Given two oriented knots K and K 1, the connected sum of K and K 1, denoted by
K#K 1, is an oriented knot defined as follows. We regard K and K 1 as subsets of two distinct copies of
S3 and fixed embedded balls B and B1 in these two S3’s such that B XK and B1 X S3) are unknotted
arcs. After removing B and B1 from these spheres and choosing an orientation reversing identification of
the boundary components BB and BB1 that maps K X pBBq to K 1X pBB1q, we obtain another copy of S3

and a knot K#K 1 in this new 3-sphere. Orientations on K and K 1 induce orientations on K#K 1 and
we require that the identification of BB and BB1 is chosen such that these two orientations on K#K 1 are
compatible with each other. The equivalence class of K#K 1 is independent of the chosen balls and the
identification of their boundaries.

Definition 1.11. Connected sum K#U of a knot K and the unknot U is equivalent to K. We say K is
prime if any presentation of K as a connected sum K1#K2 implies that either K1 or K2 is the unknot.

Figure 3: This figure shows the connected sum of the trefoil and the figure-eight knot.

One of the early questions in knot theory was to classify prime knots with a small number of crossings1.
As an example, see Figure 8 which gives a classification of such knots by Tait in 1884. There are some
mistakes in this table which was subsequently fixed.

1See Section 2 for the definition of crossing number for a knot K.
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Figure 4: The above moves and their inverses are called Reidemeister moves.

2 Link Diagrams

Link diagrams provide a helpful way of representing links. Suppose K Ă R3 is a link (in the PL sense).
In order to form a diagram we consider the projection map π : R3 Ñ R2 along the z-axis given by
πpx, y, zq “ px, yq. We say K is in general position with respect to π if the inverse image of each point
in R2 intersects the link K in at most two points. Furthermore, if a vertex point of K belongs to this
inverse image, then the inverse image contains exactly one point. We can always find a representative for
K which is in general position with respect to π by applying ∆-moves and their inverses.

Definition 2.1. Suppose a representative for K is given which is in general position with respect to π.
Then πpKq determines a closed curve in R2 with a number of double points. Any double point of πpKq
is called a crossing. At each crossing, two line segments of πpKq intersect. The segment which goes
over is called an over-crossing and the other one is called an under-crossing. The curve πpKq and the
information of over-crossing and under-crossing at each crossing is called a diagram for K.

Any diagram D of K determines (the equivalence class of) K. However, a link K has more than one
diagram. For example, we can change a diagram of K by the moves in Figure 4 or their inverses. These
moves are called Reidemeister moves. The following theorem asserts that these moves would be sufficient
to obtain all diagrams of K. This theorem can be proved by analyzing what happens to the diagram of K
after a ∆-move.

Theorem 2.2. Two knots are equivalent if and only if their diagrams are equivalent to each other by a
sequence of Reidemeister moves.

One of the themes of knot theory (and in particular this class) is to define link invariants and use them
to study links. We can use the notion of diagrams to define the first such invariant:

Definition 2.3. The crossing number of a link K is the minimum number of crossings among all diagrams
for K.

In general, computing crossing number is not easy, and we shall develop more approachable invariants
throughout the semester. See, however, Theorem 3.2, which we shall prove later.
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Figure 5: This is a non-trivial diagram for the unknot.

3 Some Families of Knots

Definition 3.1. A knot is alternating if it admits a link diagram such that the over-crossings and under-
crossings alternates as we travel along the knot. The trefoil and the figure eight knot are both alternating.

Theorem 3.2. The number of crossings for a reduced alternating diagram of a knot K is equal to the
crossing number of K.

The definition of reduced diagrams and the proof of this theorem will be given later in the class.

As two other families of knots, see Figures 6 and 7. Figure 6 sketches the pp, qq-torus link usually
denoted by Tp,q. In the case that p and q are coprime, Tp,q is a knot. Figure 7a gives a schematic picture
of a Pretzel link P pa1, . . . , anq. Here a block with an integer ai consists of two strands which is twisted
to the left ai times if ai is positive and is twisted to the right ´ai times if ai is negative. (See Figure 7b)

Figure 6: Torus Links
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(a) A schematic figure of Pretzel link

(b) The strand on the left repre-
sent 4 left-handed twists and the
strands on the right represent 4
right-handed twists

Figure 7: Pretzel link

4 Possible Topics

Here is a list of topics that I plan to cover in this class. This list will be updated based on students’
interests:

(i) Jones polynomial;

(ii) Seifert surfaces;

(iii) Cyclic branched covers of S3 along knots;

(iv) Invariants obtained from cyclic covers: Alexander polynomial, signature, etc.;

(v) Representing 3-manifolds using links;

(vi) Studying fundamental groups of knot complements.
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Figure 8: Classification of knots with Small number of Crossings by Tait in 1884
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