
Lecture 10

1 Introduction

In this lecture, we state classification of orientable surfaces. To that end, we firstly explain one way of
defining the notion of orientability for manifolds. Next, we define Seifert surfaces for oriented links,
which are very useful objects in knot theory.

2 Orientations of Smooth Manifolds

Suppose V is an n-dimensional real vector space and pf1, . . . , fnq is a basis for V . If pe1, . . . , enq is
another basis for V , then there is a unique element A “ pAj

i q of GLpn,Rq such that:

ei “
ÿ

j

Aj
ifj .

We partition the set of bases of V , denoted by B, into two subsets B0 and B1 where pe1, . . . , enq P B0

if and only if the determinant of A is positive. It is easy to see that this partition is independent of the
choice of the basis pf1, . . . , fnq up to relabeling the two sets. An orientation for V is a choice of one of
the sets B0 and B1. Any basis element in the chosen set is called a positively oriented basis and any basis
element in the other set is a negatively oriented basis.

Example 2.1. The following basis for Rn

e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, . . . , 0q, . . . en “ p0, 0, . . . , 1q

represents the standard orientation. The other orientation of Rn is represented by pe2, e1, . . . , enq.

If M is a smooth manifold of dimension n and p P M , then the tangent space of M at p gives an
n-dimensional vector space. This space can be thought as the vector space of tangent vectors at t “ 0
of curves γptq such that γp0q “ p. A choice of orientations for all tangent spaces at points p of M such
that the orientations depend continuously on p is called an orientation of M . We say M is orientable
if it admits an orientation. If M is path connected and orientable, then there are exactly two choices of
orientations.

Example 2.2. Any Euclidean space Rn is orientable.
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Example 2.3. If M is an orientable manifold with boundary, then it determines an orientation on its
boundary BM . Let p be a point on the boundary of M . Then the tangent space to M at the point is given
by the sum of the tangent space to BM and the 1-dimensional space spanned by the outward pointing
normal vector ν. If pe1, . . . , enq is a basis of the tangent space of BM at p, then we declare that this basis
is positively oriented if pν, e1, . . . , enq is a positively oriented basis for M . Since Sn is the boundary of
the pn` 1q-dimensional ball Dn`1, the n-dimensional sphere is orientable.

Example 2.4. If M and N are two orientable manifolds, then their products M ˆN is also orientable.
The vectors tangent to a point pp, qq P M ˆ N can be identified with the direct sum of the space of
vectors tangent to M at the point p and the space of vectors tangent to N at the point q. In particular,
if pe1, . . . , emq represents a choice of an orientation of M at p and pe11, . . . , e

1
nq represents a choice of

an orientation of N at q, then pe1, . . . , em, e11 . . . , e
1
nq determines an orientation of M ˆN at the point

pp, qq.Using this construction, we can verify orientability of M ˆN assuming orientability of M and N .
In particular, the 2-dimensional torus S1 ˆ S1 is orientable.

Example 2.5. If M and N are two orientable manifolds, then their products M ˆN is also orientable.
The vectors tangent to a point pp, qq P M ˆ N can be identified with the direct sum of the space of
vectors tangent to M at the point p and the space of vectors tangent to N at the point q. In particular,
if pe1, . . . , emq represents a choice of an orientation of M at p and pe11, . . . , e

1
nq represents a choice of

an orientation of N at q, then pe1, . . . , em, e11 . . . , e
1
nq determines an orientation of M ˆN at the point

pp, qq.Using this construction, we can verify orientability of M ˆN assuming orientability of M and N .
In particular, the 2-dimensional torus S1 ˆ S1 is orientable.

Example 2.6. The Möbius strip is not orientable.

3 Classification of Orientable Surfaces

For our purposes in this class, a surface is a compact, connected and orientable 2-dimensional manifold
(possibly with boundary). Any surface admits a unique smooth structure and hence we can focus on
smooth surfaces. The 2-dimensional sphere S2 and the torus S1 ˆ S1 are examples of surfaces. More
generally, the spaces Σg and Σ˝g, introduced in the previous lectures, are examples of surfaces.

We firstly give a classification of orientable surfaces with empty boundary. Any such surface is
diffeomorphic to Σg for an appropriate choice of g. Therefore, orientable surfaces (without boundary) is
determined by the genus number g. Recall that the homology groups of Σg are given as follows:

H0pΣgq “ H2pΣgq “ Z, H1pΣgq “ Z2g.

In general, for a topological space we define the Euler characteristic of a topological space X to be:

epXq :“ rankpH0pXqq ´ rankpH1pXqq ` rankpH2pXqq ´ rankpH3pXqq ` . . .

Here we assume that the homology group HipXq vanishes when i is large enough. Our calculation above
shows that the Euler characteristic of Σg is equal to 2 ´ 2g. Therefore, we can also conclude that any
orientable surface with empty boundary is determined by its Euler characteristic.
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Next, we recall classification of all orientable surfaces with boundary. Let Σg,d be the surface obtained
by removing the interior of d open discs from Σg. (See Figure 1.) In particular, Σg,1 is the surface that we
denote by Σ˝g. The boundary of the surface Σg,d has d connected components. An easy application of
Mayer-Vietoris sequence implies that for d ě 1:

H0pΣgq “ Z, H1pΣgq “ Z2g`d´1, H2pΣgq “ 0.

In particular, the Euler characteristic of Σg,d is equal to 2´ 2g ´ d. (Notice that the same formula holds
even if d “ 0.) Any orientable surface M is diffeomorphic to Σg,d for appropriate choices of g and d.
The number d is equal to the number of the boundary components of M , and g is equal to 2´epMq´d

2 .

Figure 1: The surface Σ3,3

4 Seifert Surfaces

Definition 4.1. Suppose L is an oriented link in S3. An oriented surface Σ embedded in S3 which has L
as its oriented boundary is Seifert surface for the Riemann surface Σ.

Proposition 4.2. Any oriented link L admits a Seifert surface.

A priori, it might not be obvious that any L admits a Seifert surface. In fact, we can construct a
Seifert surface for L staring with a diagram for D. Suppose sopDq denotes the diagram of D obtained by
resolving all crossings of D into the oriented resolution. That is to say, we resolve all positive crossings
of D to positive resolutions and all negative crossings of D to negative resolutions. The resulting digram
consists of an oriented digram for the unlink with |sopDq| components. Each of the connected components
of sopDq is called a Seifert circuit. We can find a union of |sopDq| oriented discs whose boundary is equal
to sopDq. In order to obtain a surface whose boundary is equal to L, we glue a band as in Figure 2. This
construction of Seifert surfaces is called Seifert algorithm.

Proposition 4.3. Suppose D is a diagram for an oriented link L with m connected components. Suppose
n denotes the number of crossings of D. Then Seifert algorithm applied to D produces a Seifert surface
with Euler characteristic |sopDq|´n and m boundary components. In particular, the genus of this Seifert
surface is equal to 2`n´|sopDq|´d

2 .

For the proof of this proposition, we need the following basic lemma about Euler characteristics,
which is again a consequence of the Mayer-Vietoris sequence:
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Figure 2

Lemma 4.4. If U and V are open subspaces of X , then epXq “ epUq ` epV q ´ epU X V q.

Proof of Proposition 4.3. The Euler characteristic of the union of discs which fill the Seifert circuits is
equal to |sopDq|. Above lemma implies that adding each band subtracts 1 from the Euler characteristic.
This observation verifies the claim.

Suppose K is a knot and Σ is a Seifert surface for K. Suppose also XpKq denotes an exterior of the
knot K. We may assume that Σ intersects the boundary of XpKq transversely by perturbing Σ. Then
the intersection of Σ with the boundary of XpKq is an oriented simple closed curve λ. Since λ bounds
a surface embedded in XpKq, it represents a trivial element of H1pXpKqq. In particular, λ defines a
longitude of the knot K.

The following observation is a consequence of the assumption that Seifert surfaces are oriented and
will be useful later for us:

Lemma 4.5. Suppose F is the intersection of a Seifert surface of K with its exterior. Then there is a
neighborhood of F in XpKq which is homeomorphic to p´1, 1q ˆ F .

Proof. Since F is orientable, we can find a smooth family of vectors vpxq for points x P F Ă S3

such that vpxq is orthogonal to vectors which are tangent to F at the point x. Now we define a map
Φ : p´ε, εq ˆ F Ñ S3 where Φpx, tq is equal to x` t ¨ vpxq. Clearly, Φ|t0uˆF gives the Seifert surface
F . Using inverse function theorem from real analysis, one can see that this map is a diffeomorphism. This
verifies the claim. (To be more precise, we need to modify this map in a neighborhood of the boundary of
XpKq.)

5 Seifert Genus

Definition 5.1. Seifert genus of a knot K, denoted by gpKq, is the minimum among the genera of Seifert
surfaces of K.

A knot is the unknot if and only if its Seifert genus is equal to 0. The following theorem asserts that
Seifert genus is additive with respect to connected sum.
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Theorem 5.2. ([Lic97, Theorem 2.4]) For any two knots K1 and K2, we have gpK1#K2q “ gpK1q `

gpK2q.
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