
Lectures 12-16

1 Introduction

The main purpose of this note is to define Alexander polynomials of a link K. As a first step toward
the definition, we associates a topological space X8pKq to K with a homeomorphism Φ : X8pKq Ñ
X8pKq. The pair pX8pKq,Φq defines a link invariant. (See Theorem 3.2.) By considering the first
homology of X8pKq and the action of Φ on this homology group, we obtain an algebraic link invariant in
the shape of a Zrt´1, ts-module. Form this module, we construct simpler algebraic invariants In Section
4. In Section 5, we introduce the notion of Seifert forms and explain how it can be used to compute the
algebraic invariants introduced in the earlier sections.

2 Regular Neighborhoods of Embedded Surfaces in R3

Suppose Σ is a Seifert surface for an oriented link in S3. We would like to see how a neighborhood of Σ
looks like. We firstly start with a simpler case:

Lemma 2.1. Suppose F is an embedding of the closed surface Σg in S3. Then there is a neighborhood of
F in XpKq which is homeomorphic to p´1, 1q ˆ Σg.

Proof. Firstly we claim that orientability of F can be used to construct v : F Ñ R3 such that for any
x P F , the vector vpxq is orthogonal to vectors to F at the point x. In fact, for each x there are exactly
two vectors v1 and ´v1 which have length 1 and are tangent to the tangent space of F at the point x. Let
e1 and e2 form an oriented basis for the tangent space of F at the point x. Then exactly one of pv1, e1, e2q

and p´v1, e1, e2q is an oriented basis for R3. In the former case, we define vpxq “ v1. Otherwise,
vpxq “ ´v1. Now we define a map Φ : p´ε, εq ˆF Ñ S3 where Φpx, tq is equal to x` t ¨ vpxq. Clearly,
Φ|t0uˆF gives the embedded surface F . Using the inverse function theorem from real analysis, one can
see that if ε is small enough, then this map is a diffeomorphism. This verifies the claim.

Lemma 2.2. Suppose Σ is an embedding of the surface Σg,d in S3. Then there is a neighborhood UΣ of
Σ in S3 which has the form p´1, 1q ˆ Σg,d. Moreover, if we remove Σ from this neighborhood, then the
resulting space is homeomorphic to Σ2g`d´1 ˆ p0, 1q.

Proof. The boundary of Σg,d produces an oriented link K with d connected components in S3. Let the
link exterior XpKq is obtained by removing a small regular neighborhood of K. Let also NpKq be
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the open subset given as the complement of XpKq in S3. Then NpKq is homeomorphic to d copies of
S1 ˆD2 and ΣXNpKq is homeomorphic to d copies of S1 ˆ r0, 1q, where r0, 1q should be regarded as
a ray from the center of D2 to a point in the boundary.

A modification of the proof of the last lemma shows that a neighborhood of Σ X XpKq is home-
omorphic to p´1, 1q ˆ Σg,d. (The modification needs to be made in a neighborhood of the boundary
of XpKq.) Then the desired neighborhood UΣof Σ is obtained by taking the union of NpLq and the
constructed neighborhood of ΣXXpKq. It is not hard to see that this neighborhood satisfies the required
properties.

Figure 1: A schematic picture of the link K and the neighborhood UΣ of Σ given as the union of red and
yellow regions. In fact, if we focus on a normal plane to K, then the above picture is accurate.

3 The Space X8pKq

Suppose K is an oriented link and Σ is a Seifert surface for K. As before let XpKq be the exterior of K
given by removing a small neighborhood of K. Then the intersection of Σ with XpKq is again a surface
which is homeomorphic to Σ and its boundary lies on the boundary of XpKq. With a slight abuse of
notation, we denote this embedded surface in XpKq with Σ, too. Using the proof of Lemma 2.2, we see
that a a neighborhood of Σ is diffeomorphic to Σ ˆ p´1, 1q. After removing this neighborhood from
XpKq we obtain another 3-manifold with boundary Y pKq such that its boundary is the union of three
pieces:

BY pKq “ Σˆ t´1u YK ˆ p´1, 1q Y Σˆ t1u

Note that the middle term is given by removing an annulus neighborhood Σ X BXpKq from BXpKq.
There are embeddings φ´ : Σ Ñ BY pKq and φ` : Σ Ñ BY pKq given by the first term and the third term
in the above description of BY pKq.

We wish to define a space X8pKq as a quotient of infinitely many copies of Y pKq. For each integer
i P Z, let YipKq be a copy of Y pKq and φ´i : Σ Ñ BYipKq and φ`i : Σ Ñ BYipKq be the corresponding
embeddings of Σ in BYipKq. Then define:

X8pKq “ p¨ ¨ ¨ Y Yi´1pKq Y YipKq Y Yi`1pKq Y . . .q{ „

where „ identifies φ`i pxq and φ´i`1pxq for any i P Z and x P Σ. That is to say, we glue each YipKq to
Yi´1pKq and Yi`1pKq respectively along imagepφ´i q and imagepφ`i q.
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(a) The space Y pKq
(b) The space X8pKq together with the homeomorphism Φ

Figure 2: In these figures, the black (resp. red) components are part of the diagram D1 (resp. D2) for the
link K1 (resp. K2).

There is an obvious homeomorphism Φ : X8pKq Ñ X8pKq which maps YipKq to Yi`1pKq. This
homeomorphism induces an isomorphism t : H1pX8pKqq Ñ H1pX8pKqq. In particular, the abelian
group H1pX8pKqq is equipped with the structure of a Zrt´1, ts-module.

Example 3.1. In the case that K is the unknot, we may take a disc to be the Seifert surface of K. In this
case, Y pKq is homeomorphic to r´1, 1sˆD2 with φ˘ : D2 Ñ r´1, 1sˆD2 given by φ˘pxq “ p˘1, xq.
In particular, the space X8pKq associated to K is given by RˆD2.

Theorem 3.2. For any oriented link K, the space X8pKq together with the homeomorphism Φ is an
invariant of K and does not depend on the choice of the Seifert surface Σ. In particular, the Zrt´1, ts-
module H1pX8pKqq is an invariant of K.

Later in the class, we prove this theorem using the theory of covering spaces. Before that we wish to
answer the following questions:

1. What are some less complicated invariants that we can obtain from the Zrt´1, ts-moduleH1pX8pKqq?

2. How can we give descriptions of the Zrt´1, ts-module H1pX8pKqq?

4 Alexander Modules

Suppose R is a commutative ring with unit and M is an R-module. A finite presentation of M is an exact
sequence of the following from:

F
α
ÝÑ E

π
ÝÑM ÝÑ 0

where E and F are free R-modules of finite ranks. In particular, the images of the basis elements of
E under the map π determine a set of generators for M and any relation among these basis elements
is a linear combination of the images of the basis elements of F under the map α. If te1, . . . , emu and
tf1, . . . , fnu are the bases for E and F , the we define the presentation matrix A “ paijq

1ďiďm
1ďjďn of α as

follows:
αpfjq “

ÿ

aijei.
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Definition 4.1. For an R-module M with a finite presentation, let A be defined as above. Then the r-th
elementary ideal Er ofM is defined to be the ideal generated by the minors of size pm´r`1qˆpm´r`1q
of A. In the case that r ą m, Er is defined to be R, and if r ď 0, we define Er “ 0.

Proposition 4.2. ([Lic97, Theorem 6.1.]) The ideal Er depends only on M and is independent of the
choice of the finite presentation of M.

For our purposes, the following algebraic facts are useful:

Lemma 4.3. The ring Zrt´1, ts is a UFD and Qrt´1, ts is a PID.

Definition 4.4. Given an oriented linkK, the r-th elementary ideal Er of the Zrt´1, ts-moduleH1pX8pKqq
of M is called the r-th Alexander ideal of K. The r-th Alexander polynomial of K is a generator of the
smallest principal ideal that contains Er. (Since Zrt´1, ts is a UFD, this is well-defined.) Among these
polynomial invariants of K, the first Alexander polynomial of K is the distinguished one, and usually is
called the Alexander polynomial of K and is denoted by ∆Kptq.

Remark 4.5. Any unit in Zrt´1, ts has the form ˘tn for an integer n. Therefore, at least given the above
definition, the Alexander polynomials are well-defined up to multiplication by elements of the form ˘tn.

5 Alexander Polynomials and Seifert Form

In this part, we give an answer to the second question raised in the end of Section 3.

5.1 Homology of the Space Y pKq

Fix a Seifert surface Σ for K as before, and let Σ be homeomorphic to Σg,d. We firstly attempt to compute
the homology group H1pS

3zΣq. Let UΣ be an open neighborhood of Σ given by Lemma 2.2. Then UΣ

and S3zΣ give an open covering of S3 and their intersection is homeomorphic to p0, 1q ˆ Σ2g`d´1. The
Mayer-Vietoris sequence implies that we have the following exact sequence:

. . . ÝÑ H2pS
3q ÝÑ H1pp0, 1q ˆ Σ2g`d´1q

Ψ
ÝÑ H1pS

3zΣq ‘H1pUΣq ÝÑ H1pS
3q ÝÑ . . . .

Since H1pS
3q “ H2pS

3q “ 0 and p0, 1q is contractible, we have the following natural isomorphism:

Ψ : H1pΣ2g`d´1q
–
ÝÑ H1pS

3zΣq ‘H1pUΣq

By Lemma 2.2, UΣ is homeomorphic to p´1, 1q ˆ Σg,d. In particular, H1pΣq “ Z2g`d´1. Since
H1pΣ2g`d´1q “ Z2p2g`d´1q, we conclude that H1pS

3zΣq is also isomorphic to Z2g`d´1. It is easy to see
that the space Y pKq constructed in Section 3 has the same homotopy type as S3zΣ. Therefore,H1pY pKqq
is also isomorphic to Z2g`d´1. Now that we obtained a good understanding of the homology groups
H1pY pKqq, we wish to study the homomorphisms φ`˚ : H1pΣq Ñ H1pY pKqq and φ´˚ : H1pΣq Ñ
H1pY pKqq induced by continuous maps φ` and φ´. To give a useful description for these maps, we need
the notion of linking number, which is discussed in the next part.
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5.2 Linking Number

Suppose K1 and K2 are two disjoint oriented knots in S3. In particular, K2 represents an element of
the first homology of XpK1q, the knot exterior K1. Recall that H1pXpK1qq is isomorphic to Z and is
generated by the homology class of a meridian of K1. Therefore, K2 is homologous to a multiple of the
class of the meridian of K1, and this multiple is called the linking number of K1, K2, and is denoted by
lkpK1,K2q. More generally, if K1 (resp. K2) is an oriented link with connected components K1,1, . . . ,
K1,m (resp. K2,1, . . . , K2,n), then:

lkpK1,K2q :“
ÿ

1ďiďm, 1ďjďn

lkpK1,i,K2,jq

Remark 5.1. In Problem Set 3, we defined another notion of linking number using knot diagrams. These
two definitions of linking number agree with each other. (See Problem Set 8.) It is clear from the definition
in Problem Set 3 that lkpK1,K2q “ lkpK2,K1q.

Now let U1 and U2 be two disjoint connected open subsets of S3. Then we can use the linking number
to define a pairing:

lk : H1pU1q ˆH1pU2q Ñ Z. (5.2)

In fact, any homology class αi of Ui can be represented by a simple closed curve Ki. Then lkpα1, α2q is
defined to be the linking number of K1 and K2. It is clear from the above definition and Remark 5.1 that
the linking number of two disjoint knots K1 and K2 do not change if we change the homology class of
one of the knots while preserving the other component. Therefore, the pairing in (5.2) is well-defined.

5.3 Seifert Form

Now we go back again to the setup of Subsection 5.1. Let K be an oriented link and Σ be a Seifert surface
for K. Suppose also a neighborhood UΣ of Σ is given by Lemma 2.2. In particular, UΣ is homeomorphic
to p´1, 1q ˆ Σ. We consider the pairing lk for the pair U1 “ p´

1
3 ,

1
3q ˆ Σ and U2 “ S3zr´1

2 ,
1
2 s ˆ Σ.

Since Σ Ă U1 and Y pKq Ă U2, the linking number determines a pairing as follows:

p : H1pΣq ˆH1pY pKqq Ñ Z

Lemma 5.3. The pairing p is non-degenerate. That is to say, if ppx, yq “ 0 for all choices of y (resp. x),
then x “ 0 (resp. y “ 0).

Proof. The surface Σ is homeomorphic to Σg,d. In particular, we may use the standard basis e1, e2, . . . ,
e2g`d´1 of H1pΣg,dq to obtain a basis for H1pΣq. As it is shown in Figure 3, there are embedded paths
γ1, γ2, . . . , γ2g`d´1 such that γi intersect ei transversely at exactly one point and it is disjoint from ej
and γj for j ‰ i. Moreover, γi intersect BΣ transversely and γi X BΣ consists of the endpoints of γi. We
may find disjoint discs Di such that Di intersects Σ at exactly γi and the boundary Di, denoted by fi is
contained in Y pKq. This implies that the linking number of ei and fj is equal to zero if i ‰ j because fj
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is null-homologous in the complement of ei. Moreover, fi in S3zei is homologous to a meridional curve
with one of the two orientations. Thus possibly after changing the orientation of fj , we may assume that:

lkpei, fjq “ δi,j . (5.4)

Figure 3: The standard basis te1, e2, e3, e4, e5, e6u for Σ2,3 and the corresponding embedded paths
tγ1, γ2, γ3, γ4, γ5, γ6u

Now let x P H1pΣq be chosen such that ppx, yq “ 0 for all y P H1pY pKqq. We can write x as a
linear combination of the following form:

x “ m1e1 ` ¨ ¨ ¨ `m2g`d´1.

The identity ppx, fiq “ 0 implies that mi “ 0. In particular, x “ 0.

Next, assume that there is y P H1pY pKqq such that ppx, yq “ 0 for all choices of x. There is a
non-trivial linear combination of f1, . . . , f2g`d´1 and y as follows such that:

z “ n1f1 ` ¨ ¨ ¨ ` n2g`d´1f2g`d´1 ` n2g`dy “ 0

Otherwise, we have a subgroup of H1pY pKqq which is isomorphic to Z2g`d, which is a contradiction
because H1pY pKqq “ Z2g`d´1. (See Subsection 5.1.) By taking the pairing of ei and z, we can show
that ni “ 0 for 1 ď i ď 2g ` d ´ 1. Thus we have n2g`dy “ 0. Since H1pY pKqq does not have any
torsion element, y “ 0. This verifies our claim.

Definition 5.5. The Seifert form for the Seifert surface Σ of K is defined to be the pairing:

q : H1pΣq ˆH1pΣq Ñ Z

defined as:
qpα, βq :“ ppα, φ`˚ pβqq.

Remark 5.6. There is a homeomorphism of the knot exterior XpKq which maps α to φ´pαq and φ`˚ pβq
to β. In particular, qpα, βq may be defined as the linking number of φ´˚ pαq and β.
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Example 5.7. Suppose Σ is the Seifert surface that is obtained by applying Seifert algorithm to the
diagram of trefoil given by Figure 4. Then the closed loops f and β form a basis for H1pΣq. Moreover,
we have:

qpα, αq “ ´1, qpα, βq “ 1, qpβ, αq “ 0, qpβ, βq “ ´1.

In particular, the intersection pairing is represented by the following matrix:
„

´1 1
0 ´1



.

Figure 4: If Σ is the Seifert surface associated to the above digram, then α, β form a basis for H1pΣq.
The homology classes φ`pαq and φ`pβq are represented by the oriented loops α` and β`.

The non-degeneracy of the pairing p implies that the maps φ`˚ : H1pΣq Ñ H1pY pKqq and φ´˚ :
H1pΣq Ñ H1pY pKqq can be described in terms of the Seifert form. We fix a basis e1, . . . , e2g`d´1 for
H1pΣq and analogous to the proof of 5.3 we fix a basis f1, . . . , f2g`d´1 for H1pY pKqq such that:

ppei, fjq “ δi,j .

Then the definition of the Seifert form implies that:

φ`˚ pejq “
ÿ

i

Qijfi. (5.8)

where Qij :“ qpei, ejq. Remark 5.6 implies that we also have:

φ´˚ pejq “
ÿ

i

Qjifi. (5.9)

Proposition 5.10. A presentation matrix for the the Zrt´1, ts-module H1pX8pKqq is given by´Q` tQt

where Q “ pQijq
1ďiď2g`d´1
1ďjď2g`d´1.

Proof. Suppose U, V be subspaces of X8pKq given as follows:

U “
ď

i

Y2ipKq V “
ď

i

Y2i`1pKq.
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In particular, U X V is the subspace
Ť

i Σi Ă X8pKq. Then Mayer-Vietoris sequence implies that:

H1pU X V q
g1
ÝÑ H1pUq ‘H1pV q

h1
ÝÑ H1pX8pKqq

d1
ÝÑ H0pU X V q

g0
ÝÑ H0pUq ‘H0pV q. (5.11)

Recall that the map gi and hi are given as follows:

gipαq “ p´k˚pαq, l˚pαqq hipβ, σq “ i˚pβq ` j˚pσq

where i : U Ñ X , j : U Ñ X , k : U X V Ñ U and l : U X V Ñ V are inclusion maps.

All the terms in (5.11) can be equipped with a Zrt´1, ts-module structure such that the morphisms are
all module homomorphisms. We already defined the module structure on HjpX8pKqq and we only need
to explain how t acts on:

p. . . , αi´1, αi, αi`1, . . . q P HjpU X V q (5.12)

with αi P HjpΣiqand

pp. . . , β2i´2, β2i, β2i`2, . . . q, p. . . , γ2i´1, γ2i`1, γ2i`3, . . . qq P HjpUq ‘HjpV q (5.13)

with β2i P HjpY2ipKqq and γ2i`1 P HjpY2i`1pKqq. Then t acts on (5.12) by shifting to the right:

t ¨ p. . . , αi´1, αi, αi`1, . . . q “ p. . . , αi´2, αi´1, αi, . . . q

and it acts on (5.13)

t ¨ pp. . . , β2i´2, β2i, β2i`2, . . . q, p. . . , γ2i´1, γ2i`1, γ2i`3, . . . qq “

“ pp. . . , γ2i´3, γ2i´1, γ2i`1, . . . q, p. . . , β2i´2, β2i, β2i`2, . . . qq

It is easy to see that the maps gi and hi are Zrt´1, ts-module homomorphisms. We didn’t give the
definition of the maps di in the class. Once you know the definition, it is not hard to show that this map
also respects the Zrt´1, ts-module structures.

Since Σ and Y pKq are connected, elements of H0pUq, H0pV q and H0pU X V q can be identified with
elements of Zrt´1, ts. The map g0 sends an element pptq P H0pU X V q to p´pptq, pptqq. In particular,
g0 is injective. Therefore, H1pX8pKqq, as a Zrt´1, ts-module, can be identified with H1pUq ‘H1pV q
modulo the image of g1. Notice that H1pU X V q and H1pUq ‘H1pV q are both free Zrt´1, ts-modules
with basis given by a Z-basis of H1pΣq and H1pY pKqq. In particular, we can take the basis e1, . . . ,
e2g`d´1 for H1pΣ0q Ă H1pU X V q and the basis f1, . . . , f2g`d´1 for H1pY0pKqq Ă H1pUq ‘H1pV q.
The map gi sends the basis element ei to ´φ`˚ peiq` tφ

´
˚ peiq. Using (5.8) and (5.9), we can conclude that:

g1peiq “
ÿ

j

p´Qij ` tQ
j
i qfj .

Thus ´Q` tQt is a presentation matrix for the module H1pX8pKqq.

Corollary 5.14. The first elementary ideal of the Alexander module is principal and is generated by
detp´Q ` tQtq. In particular, the Alexander polynomial of K is equal to detp´Q ` tQtq (up to
multiplication by ˘tn).
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Figure 5

Example 5.15. Proposition 5.10 implies that a presentation matrix for H1pX8pT2,3qq is given as:
„

1´ t ´1
t 1´ t



.

Therefore, the Alexander polynomial of trefoil is equal to t2 ´ t` 1.
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