Lecture 17

1 Introduction

In this lecture, we discuss some of the basic properties of Alexander polynomials of knots. Recall that
so far Alexander polynomial of an oriented link K, denoted by Ak (¢), is defined up to multiplication
by +t". So it is convenient to introduce a notation for this possibility. If p;(¢), p2(t) are elements of
Z[t~1 ] such that po(t) = £t"p1(t), then we write py (t) = po(t).

2 Basic Properties of Alexander Polynomial

Proposition 2.1. For any oriented link K, we have A (t™1) = A (t).

Proof. Suppose (@ is the matrix of a Seifert form of K, which has size m. The above identity is an
immediate consequence of the characterization of A (¢) in terms of Q:

At =det(—Q + t71Q") = (—t) ™ det(tQ — Q") = det(tQ — Q) = det(tQ' — Q) = Ax(t).
O

Proposition 2.2. For any oriented knot K, we have Ak (1) = +1. For any oriented link K with more
than two components, we have Ak (1) = 0.

In order to prove the above lemma, we firstly consider the following elementary lemma about linking
numbers:

Lemma 2.3. Suppose A is an embedding ¢ : [—1,1] x S* — S3 of a cylinder into S3. Suppose
denotes the knot given by ¢| (tyxs1- Then we have:

(i) If K is a knot in S® which is disjoint from A, then 1k(K, ) = Ik(K,~y_1).
(ii) If K is a knot in S which intersects A transversely in one point, then 1k(K,v1) = Ik(K,~v_1) + 1.

(iii) 1k(v0,71) = k(y0,7-1)-



Proof. In (i), the cylinder A allows us to show that 77 and y_; represent the same homology class in
S3\K. In (i4), the cylinder A minus a small neighborhood of the intersection point A N K shows that
the difference of homology classes of y; and y_; is homologuos to +x where p is the homology class
of a meridian of K. Finally, in (ii7), we can push 7y off A by a small perturbation to obtain ;, which
represent the same homology class as v in S3\(y; U 7_1). Therefore, we have:

Ik(70,71) — k(v0,7-1) = lk(v9,71) — k(79 7-1) = 0.
For the second identity, we use part (7). O
Proof of Proposition 2.2. Suppose K has d connected components and ¥ is a Seifert surface for K which
is diffeomorphic to X, 4. Then H;(X) has a basis of the form ey, e, . . ., €2414—1 such that for ep;_; and
eg; intersect transversely in exactly one point for 1 < ¢ < g, and all other pairs of e; and e; are disjoint

from each other. Then we have Ak (1) = det(Q' — Q). The (k,l)-entry of Q' — @, denoted by af is
given as follows:

Ik(ex, ¢ (e1)) — k(er, oy (1)) = Lk(er, ¢l (ex)) — Lk(er, &y (ex))-
Lemma 2.3 the only non-vanishing possible values of af are given as follows:
N = —ai_, - #1.

In particular, Q' — @ is the matrix which has g diagonal 2 x 2 blocks of the following form:

5]

and the remaining entries are zero. Thus det(Q® — Q) is £1if d = 1 and is 0 if d > 1. This completes
the proof. O

We can use the previous two propositions to remove the ambiguity in the definition of A (¢) in the
case that K is a knot. Proposition 2.1 implies that for any oriented link K, if we have:

AK(t) ;a0+a1t+---+aNtN

with ag, ay # 0,then ay_p = +ai forany 0 < k < N. If K is a knot, then N has to be an even integer
2M, otherwise Ak (1) is even, which is a contradiction. Moreover, the sign in asp/—; = tay has to be
positive, otherwise the term aj; = 0, which implies again the contradictory result that Ag (1) is an even
integer. In summary, after relabeling the indices and changing the representative, we can assume that:

Ag(t) = by + bl(t+t—1) e bM(tM -I-t_M)

where by is an odd integer. There is still a sign ambiguity and multiplying the above polynomial by
—1 gives another representative with the similar from. We may avoid this ambiguity by requiring that
Ag(1) =1.

Proposition 2.4. Alexander polynomial Ak (t) of an oriented link K satisfies the following properties
with respect to basic operations on knots:



(i) If rK denotes K with the reverse orientation, then A,k (t) =~ Ak(t).
(ii) If K denotes the reflection of K, then Az(t) = A (t).

(iii) AKl#Kg (t) = AKl (t) . AK2 (t)

Proof. Suppose 3 is a Seifert surface for K. Then X with the reverse orientation gives a Seifert matrix
for r K, and reflection of ¥ (with the induced orientation by reflection) gives a Seifert surface for . From
this it is easy to see that if () is the Seifert form matrix associated to ¥, then Q! and —Q give Seifert
matrices for rK and K.

Next, let X1 and X5 be Seifert surfaces for K and K5. Then the boundary sum 31§35 is a Seifert
surface for K1# K. If ()1 and ()5 are the Seifert form matrices associated to 331 and Yo, then the matrix
with two diagonal blocks 1 and ()5 is the Seifert matrix associated to X153, O

Recall that for p(t) € Z[t~!, t], we defined M (p(t)) (resp. m(p(t))) to be the degree of the largest
(resp. smallest) power of ¢ in p(¢).

Proposition 2.5. If Y is a Seifert surface of genus g for a link K, then M (A (t))—m(Ax(t)) < 2g+d—1.

In particular, for any knot K :

Notice that the expression on the left does not change if we change the representative of A (t) by
multiplying with an expression of the form +t™.

Proof. 1f ¥ is homeomorphic to Y, 4, then the associated Seifert form matrix () has size 2g + d — 1.
Therefore, the largest power of det(—Q + tQ') is at most 2g + d — 1 and the smallest power of
det(—Q + tQ") is at least 0. This proves the desired result. O

Proposition 2.6. If L = Ky U K> is a link with connected components such that there are disjoint Seifert
surfaces ¥ and Yo for Ky and Ky, then Ap(t) = 0.

Proof. We fix bases ey, ..., eaq, for Hi(X1) and fi, ..., fog, for Hi(X2). We also take the connect
31 and X5 by a thin tube to form a Seifert surface 3 for L. Let h be a small closed loop which goes

around the tube once. Then ey, e, ..., eag,, f1, f2, ..., fag, and h form a basis for H;(X). Moreover,
the Seifert pairing of ¢ with any other basis element vanishes. This shows that the last column and the last
row of the Seifert matrix has vanishing entries. O
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