Lecture 17

1 Introduction

In this lecture, we discuss some of the basic properties of Alexander polynomials of knots. Recall that so far Alexander polynomial of an oriented link K, denoted by $\Delta_{K}(t)$, is defined up to multiplication by $\pm t^{n}$. So it is convenient to introduce a notation for this possibility. If $p_{1}(t), p_{2}(t)$ are elements of $\mathbf{Z}\left[t^{-1}, t\right]$ such that $p_{2}(t)= \pm t^{n} p_{1}(t)$, then we write $p_{1}(t) \cong p_{2}(t)$.

2 Basic Properties of Alexander Polynomial

Proposition 2.1. For any oriented link K, we have $\Delta_{K}\left(t^{-1}\right) \cong \Delta_{K}(t)$.
Proof. Suppose Q is the matrix of a Seifert form of K, which has size m. The above identity is an immediate consequence of the characterization of $\Delta_{K}(t)$ in terms of Q :

$$
\Delta_{K}\left(t^{-1}\right)=\operatorname{det}\left(-Q+t^{-1} Q^{t}\right)=(-t)^{-m} \operatorname{det}\left(t Q-Q^{t}\right) \cong \operatorname{det}\left(t Q-Q^{t}\right)=\operatorname{det}\left(t Q^{t}-Q\right)=\Delta_{K}(t) .
$$

Proposition 2.2. For any oriented knot K, we have $\Delta_{K}(1)= \pm 1$. For any oriented link K with more than two components, we have $\Delta_{K}(1)=0$.

In order to prove the above lemma, we firstly consider the following elementary lemma about linking numbers:

Lemma 2.3. Suppose A is an embedding $\phi:[-1,1] \times S^{1} \rightarrow S^{3}$ of a cylinder into S^{3}. Suppose γ_{t} denotes the knot given by $\left.\phi\right|_{\{t\} \times S^{1}}$. Then we have:
(i) If K is a knot in S^{3} which is disjoint from A, then $\operatorname{lk}\left(K, \gamma_{1}\right)=\operatorname{lk}\left(K, \gamma_{-1}\right)$.
(ii) If K is a knot in S^{3} which intersects A transversely in one point, then $\operatorname{lk}\left(K, \gamma_{1}\right)=\operatorname{lk}\left(K, \gamma_{-1}\right) \pm 1$.
(iii) $\operatorname{lk}\left(\gamma_{0}, \gamma_{1}\right)=\operatorname{lk}\left(\gamma_{0}, \gamma_{-1}\right)$.

Proof. In (i), the cylinder A allows us to show that γ_{1} and γ_{-1} represent the same homology class in $S^{3} \backslash K$. In (ii), the cylinder A minus a small neighborhood of the intersection point $A \cap K$ shows that the difference of homology classes of γ_{1} and γ_{-1} is homologuos to $\pm \mu$ where μ is the homology class of a meridian of K. Finally, in (iii), we can push γ_{0} off A by a small perturbation to obtain γ_{0}^{\prime} which represent the same homology class as γ_{0} in $S^{3} \backslash\left(\gamma_{1} \cup \gamma_{-1}\right)$. Therefore, we have:

$$
\operatorname{lk}\left(\gamma_{0}, \gamma_{1}\right)-\operatorname{lk}\left(\gamma_{0}, \gamma_{-1}\right)=\operatorname{lk}\left(\gamma_{0}^{\prime}, \gamma_{1}\right)-\operatorname{lk}\left(\gamma_{0}^{\prime}, \gamma_{-1}\right)=0
$$

For the second identity, we use part (i).

Proof of Proposition 2.2. Suppose K has d connected components and Σ is a Seifert surface for K which is diffeomorphic to $\Sigma_{g, d}$. Then $H_{1}(\Sigma)$ has a basis of the form $e_{1}, e_{2}, \ldots, e_{2 g+d-1}$ such that for $e_{2 i-1}$ and $e_{2 i}$ intersect transversely in exactly one point for $1 \leqslant i \leqslant g$, and all other pairs of e_{i} and e_{j} are disjoint from each other. Then we have $\Delta_{K}(1)=\operatorname{det}\left(Q^{t}-Q\right)$. The (k, l)-entry of $Q^{t}-Q$, denoted by a_{l}^{k} is given as follows:

$$
\operatorname{lk}\left(e_{k}, \phi_{*}^{-}\left(e_{l}\right)\right)-\operatorname{lk}\left(e_{k}, \phi_{*}^{+}\left(e_{l}\right)\right)=\operatorname{lk}\left(e_{l}, \phi_{*}^{+}\left(e_{k}\right)\right)-\operatorname{lk}\left(e_{l}, \phi_{*}^{-}\left(e_{k}\right)\right)
$$

Lemma 2.3 the only non-vanishing possible values of a_{l}^{k} are given as follows:

$$
a_{2 i}^{2 i-1}=-a_{2 i-1}^{2 i}= \pm 1
$$

In particular, $Q^{t}-Q$ is the matrix which has g diagonal 2×2 blocks of the following form:

$$
\pm\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

and the remaining entries are zero. Thus $\operatorname{det}\left(Q^{t}-Q\right)$ is ± 1 if $d=1$ and is 0 if $d>1$. This completes the proof.

We can use the previous two propositions to remove the ambiguity in the definition of $\Delta_{K}(t)$ in the case that K is a knot. Proposition 2.1 implies that for any oriented link K, if we have:

$$
\Delta_{K}(t) \cong a_{0}+a_{1} t+\cdots+a_{N} t^{N}
$$

with $a_{0}, a_{N} \neq 0$, then $a_{N-k}= \pm a_{k}$ for any $0 \leqslant k \leqslant N$. If K is a knot, then N has to be an even integer $2 M$, otherwise $\Delta_{K}(1)$ is even, which is a contradiction. Moreover, the sign in $a_{2 M-k}= \pm a_{k}$ has to be positive, otherwise the term $a_{M}=0$, which implies again the contradictory result that $\Delta_{K}(1)$ is an even integer. In summary, after relabeling the indices and changing the representative, we can assume that:

$$
\Delta_{K}(t) \cong b_{0}+b_{1}\left(t+t^{-1}\right) \cdots+b_{M}\left(t^{M}+t^{-M}\right)
$$

where b_{0} is an odd integer. There is still a sign ambiguity and multiplying the above polynomial by -1 gives another representative with the similar from. We may avoid this ambiguity by requiring that $\Delta_{K}(1)=1$.

Proposition 2.4. Alexander polynomial $\Delta_{K}(t)$ of an oriented link K satisfies the following properties with respect to basic operations on knots:
(i) If $r K$ denotes K with the reverse orientation, then $\Delta_{r K}(t) \cong \Delta_{K}(t)$.
(ii) If \bar{K} denotes the reflection of K, then $\Delta_{\bar{K}}(t) \cong \Delta_{K}(t)$.
(iii) $\Delta_{K_{1} \# K_{2}}(t) \cong \Delta_{K_{1}}(t) \cdot \Delta_{K_{2}}(t)$.

Proof. Suppose Σ is a Seifert surface for K. Then Σ with the reverse orientation gives a Seifert matrix for $r K$, and reflection of Σ (with the induced orientation by reflection) gives a Seifert surface for $\bar{\Sigma}$. From this it is easy to see that if Q is the Seifert form matrix associated to Σ, then Q^{t} and $-Q$ give Seifert matrices for $r K$ and \bar{K}.

Next, let Σ_{1} and Σ_{2} be Seifert surfaces for K_{1} and K_{2}. Then the boundary sum $\Sigma_{1} \curvearrowleft \Sigma_{2}$ is a Seifert surface for $K_{1} \# K_{2}$. If Q_{1} and Q_{2} are the Seifert form matrices associated to Σ_{1} and Σ_{2}, then the matrix with two diagonal blocks Q_{1} and Q_{2} is the Seifert matrix associated to $\Sigma_{1} \curvearrowleft \Sigma_{2}$.

Recall that for $p(t) \in \mathbf{Z}\left[t^{-1}, t\right]$, we defined $M(p(t))$ (resp. $\left.m(p(t))\right)$ to be the degree of the largest (resp. smallest) power of t in $p(t)$.

Proposition 2.5. If Σ is a Seifert surface of genus gfor a link K, then $M\left(\Delta_{k}(t)\right)-m\left(\Delta_{k}(t)\right) \leqslant 2 g+d-1$. In particular, for any knot K :

$$
g(K) \geqslant \frac{M\left(\Delta_{k}(t)\right)-m\left(\Delta_{k}(t)\right)}{2}
$$

Notice that the expression on the left does not change if we change the representative of $\Delta_{K}(t)$ by multiplying with an expression of the form $\pm t^{n}$.

Proof. If Σ is homeomorphic to $\Sigma_{g, d}$, then the associated Seifert form matrix Q has size $2 g+d-1$. Therefore, the largest power of $\operatorname{det}\left(-Q+t Q^{t}\right)$ is at most $2 g+d-1$ and the smallest power of $\operatorname{det}\left(-Q+t Q^{t}\right)$ is at least 0 . This proves the desired result.

Proposition 2.6. If $L=K_{1} \cup K_{2}$ is a link with connected components such that there are disjoint Seifert surfaces Σ_{1} and Σ_{2} for K_{1} and K_{2}, then $\Delta_{L}(t)=0$.

Proof. We fix bases $e_{1}, \ldots, e_{2 g_{1}}$ for $H_{1}\left(\Sigma_{1}\right)$ and $f_{1}, \ldots, f_{2 g_{2}}$ for $H_{1}\left(\Sigma_{2}\right)$. We also take the connect Σ_{1} and Σ_{2} by a thin tube to form a Seifert surface Σ for L. Let h be a small closed loop which goes around the tube once. Then $e_{1}, e_{2}, \ldots, e_{2 g_{1}}, f_{1}, f_{2}, \ldots, f_{2 g_{2}}$ and h form a basis for $H_{1}(\Sigma)$. Moreover, the Seifert pairing of q with any other basis element vanishes. This shows that the last column and the last row of the Seifert matrix has vanishing entries.

