
Lectures 18 and 19

1 Introduction

In the previous lectures, we saw that how we can use a Seifert surface Σ of an oriented link K to define a
square matrix which is called the Seifert matrix. We also stated a theorem that explains how Alexander
polynomial can be computed out of the Seifert matrix. The Seifert matrix clearly depends on the choice of
the Seifert surface. For example, even the size of the Seifert matrix changes as we change the topology of
Σ. In this lecture, we closely study the effects of changing the Seifert surface on the Seifert matrix. This
allows us the ambiguity in the definition of Alexander polynomial of K.1 This would in turn lead to a
new characterization of Alexander polynomial in terms of link diagrams.

Definition 1.1. Let A be an n ˆ n matrix with integer entries. An elementary enlargement of A is a
matrix B which has the following form of one of the following matrices:

»

—

—

—

—

–

AA ζ 0

0 0 1

0 0 0

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

AA 0 0

ηt 0 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

, (1.2)

where ζ, η P Rn. Under this assumption, we say A is an elementary reduction of B.

We say A is unimodular congruent ti B if there is a matrix P with integer entries and detpP q “ ˘1
such that A “ P tAP .

Definition 1.3. We say A and B are S-equivalent, if they are related to each other by a sequence of
elementary enlargements, elementary reductions and unimodular congruences.

Theorem 1.4. ([Lic97, Theorem 8.4]) Any two Seifert matrices of an oriented link K are S-equivalent to
each other.

Let A be a Seifert matrix for a link K. Then we define the Conway normalized Alexander polynomial
of K to be:

∆Kptq :“ detp´t
1
2A` t

1
2Atq P Zrt´

1
2 , t

1
2 s. (1.5)

Notice that if m is the size of A, then we have ∆Kptq “ t´
m
2 detpA ` tAtq. In particular, this agrees

with the previous characterization of Alexander polynomial (which was already ambiguous up ˘tn) up to
a half integer power of t.

1We already know how to remove this ambiguity for a knot, but not for link with more than one connected component.
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The following proposition is a consequence of Theorem 1.4 and can be proved by studying the behavior
of (1.5) with respect to elementary enlargements, elementary reductions and unimodular congruences:

Corollary 1.6. ([Lic97, Theorem 8.5]) Conway normalized Alexander polynomial is an invariant of K
and does not depend on the choice of the Seifert matrix.

Theorem 1.7. ∆Kptq P Zrt
´ 1

2 , t
1
2 s is uniquely characterized by the following properties:

(i) ∆U ptq “ 1 where U is the unknot.

(ii) ∆L`
ptq ´∆L´

ptq “ pt´
1
2 ´ t

1
2 q∆L0ptq where L` is an arbitrary link with a given diagram and

L´, L0 are obtained by changing L` in a neighborhood of a crossing as in Figure 1.

(a) L`
(b) L´ (c) L0

Figure 1: Diagrams of the three oriented links L`, L´ and L0

Proof. Similar to our second characterization of Jones polynomial, there is at most one polynomial for
each link K which satisfies the above two properties. To finish the proof of the above theorem, we need
to show that the definition (1.5) satisfies the two properties. It is clear that ∆U ptq “ 1. To see the other
property, we apply Seifert algorithm to the given diagram of L` and the induced diagrams of L´ and L0.
(See Figure 1.) We denote these Seifert surfaces with Σ`, Σ´ and Σ0. The Euler characteristics of these
surfaces are related as follows:

χpΣ`q “ χpΣ´q “ χpΣ0q ´ 1.

In fact, if Σ0 – Σg,d, then Σ` – Σ´ is homeomorphic to Σg,d`1 or Σg`1,d´1. In any case, if we pick
a basis of oriented closed loops for H1pΣ0q, then they induce a set of loops in Σ` (resp. Σ´) which
together with a loop f` (resp. f´) as in Figure 1a (resp. 1b) gives a basis for H1pΣ`q (resp. H1pΣ´q).
The loops f` and f´ agree with each other outside the crossings of L` and L´ which are shown in the
figure. In particular, if N is the self-pairing of f` with respect to the Seifert form of L` induced by Σ`,
then the self-pairing of f´ with respect to the Seifert form of L´ induced by Σ´ is equal to N ` 1. The
pairing of f` with the other basis elements are equal to the pairing of f´ with other basis elements, and
the pairing of other basis elements with each other are equal to the one given by Σ0. In particular, the
Seifert matrices associated to Σ`, Σ´ and Σ0 have the following form:

A` “

»

—

—

–

N ζt

η AAA

fi

ffi

ffi

fl

A´ “

»

—

—

–

N ` 1 ζt

η AAA

fi

ffi

ffi

fl

A0 “ A (1.8)

It is easy to see piiq from these identities.
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Example 1.9. The Alexander polynomial of a the unknit with at least two components is equal to 0. For
example in the case of the link with two components, this can be see by applying part piiq of the previous
theorem to the knot digram in 2. A similar argument can be used to prove the general case.

Figure 2

Corollary 1.10. (i) ∆Kp1q “ 1 if K is a knot and ∆Kp1q “ 0 if K is a link with at least two
connected components.

(ii) ∆Kptq is a polynomial in y “ t´
1
2 ´ t

1
2 .

Proof. Theorem (1.7) implies that ∆L`
p1q “ ∆L´

p1q. Since any link can be turn into an unlink with the
same number of connected components by a number of crossing changes, the first claim follows from the
evaluation of Alexander polynomials of unlinks. The second claim follows from induction similar to the
proof of the analogous property for Jones polynomial.

We define ∇Kpyq P Zrys to the polynomial such that:

∇Kpt
´ 1

2 ´ t
1
2 q “ t´

1
2 ´ t

1
2 .

Corollary 1.11. If ∇Kpyq “
ř

iě0 aipKqy
i, then we have:

(i) aipKq “ 0 for i ” #L mod 2 or i ă #L´ 1.

(ii) If K is a knot, then a0pKq “ 1.

(iii) IfK is a link with two components, then a1pKq is equal to the linking number of the two components
of K.

Proof. The second part of Theorem 1.7 can be written as follows:

∇L`
pzq ´∇L´

pzq “ z∇L0pzq.

Moreover, we have:
#L` “ #L´ “ #L0 ˘ 1.

Therefore, an inductive argument as before can be used to prove piq. To be more detailed, one uses
induction on the crossing number and then induction on the following quantity for a link with crossing
number n:

CpKq “ mintnumber of crossing changes required to turn D into a diagram for an unlink |
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D is a diagram of K with n crossingsu

Part piiq is a consequence of Corollary 1.10. To see piiiq note that part piiq and Theorem 1.7 imply that:

a2pL`q ´ a2pL´q “ 1

where L` is a link with two components and L´ is obtained by turning one of the positive crossings
between the two components of L` into a negative crossing. Now theorem follows from the diagramatic
definition of linking number in Problem Set 3.
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