
Lecture 9

1 Introduction

Fundamental groups of topological spaces tend to be non-abelian groups. This makes it often hard to
get a good grasp on fundamental groups. One way to simplify the picture is to consider an abelianized
version of fundamental groups. This goal can be achieved by introducing the first homology group of
a topological space. In fact, one can easily generalize the definition of first homology group to define
homology groups of arbitrary degree. In this lecture, we give the definition of the first homology group of
a topological space and sketch how it can be generalized to give homology groups of arbitrary degree.

2 Homology Groups

Let X be a topological space. Motivated by the definition of the fundamental group of X , let C1pXq
denote the free abelian group generated by paths in X . To be more detailed, an element of C1pXq consists
of all formal linear combinations of the following form:

α “ m1 ¨ γ1 `m2 ¨ γ2 ` ¨ ¨ ¨ `mk ¨ γk (2.1)

where mi is an integer and γi is a continuous map from r0, 1s to X . The addition of two such paths is
defined in the obvious way.

We can form the variation CipXq of C1pXq by replacing paths with i-dimensional paths in X . We
start with the simplest case that i “ 0. The abelian group C0pXq consists of elements of the following
form:

β “ m1 ¨ x1 `m2 ¨ x2 ` ¨ ¨ ¨ `mk ¨ xk (2.2)

where mi is an integer and xi is a point in X . There is a homomorphism B1 : C1 Ñ C0. For example,
B1pαq for the element α is equal to:

B1pαq :“ m1pγ1p1q ´ γ1p0qq `m2pγ2p1q ´ γ2p0qq ` ¨ ¨ ¨ `mkpγkp1q ´ γkp0qq

Notice that starting with any element in the kernel of B1, we can from a union of closed loops in X .
Moreover, cokerpB1q :“ C0pXq{ impB1q can be identified with Zn, a free abelian group of rank n, where
n is the path connected components of X . This co-kernel is the 0-th homology group of X , denoted by
H0pXq.
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We may form a sub-group rC0 of C0 consisting of elements as in (2.2) where
ř

imi “ 0. Clearly, the
image of B1 is in rC0. Therefore, we can form the quotient rH0pXq :“ rC0{ impB1q which is called the 0-th
reduced homology group of X and is denoted by Zn´1, where n is again the number of the connected
components of X . Sometimes it is more convenient to work with alternative version of the 0-th homology
group.

Next, we define C2pXq. An element of C2pXq is a formal linear combination of the following from:

τ “ m1 ¨ σ1 `m2 ¨ σ2 ` ¨ ¨ ¨ `mk ¨ σk (2.3)

where σi is a map from the 2-dimensional simplex ∆ (Figure ??) to X . We also fix identifications of the
edges of ∆ with the interval r0, 1s. This allows us to define a map B2 : C2pXq Ñ C1pXq whose value at
the element in (2.3) is equal to:

B2pτq “ m1 ¨ pσ1pe1q ` σ1pe2q ´ σ1pe3qq ` ¨ ¨ ¨ `mk ¨ pσ1pe1q ` σ1pe2q ´ σ1pe3qq

The following lemma is an immediate consequence of definitions of B1 and B2:

Lemma 2.4. B1 ˝ B2 “ 0, i.e., impB2q Ă kerpB1q

Definition 2.5. The first homology ofX , denoted byH1pXq, is defined to be the quotient kerpB1q{impB2q.

In general, we can defineCipXq by considering maps from the i-dimensional simplex toX . Restriction
of maps to boundaries of i-dimensional simplices produces a map Bi : CipXq Ñ Ci´1pXq with the
property that Bi´1 ˝ Bi. Therefore, by imitating Definition 2.5, we define the homology group HipXq to be
kerpBiq{impBi`1q. In our class we will be mainly interested in H1pXq for various choices of topological
spaces X which are constructed out knots and links, e.g., the knot complement.

Remark 2.6. Let X be a path connected topological space. Any element of π1pXq can be represented by
a based loop γ : S1 Ñ X . Any such element represents the trivial element if there is a map Γ : D2 Ñ X
such that Γ|BD2 “ γ. Here D2 is the 2-dimensional disc. It is not hard to see that any element of H1pXq
can be also represented by a closed loop γ : S1 Ñ X . One difference in the homology case is that the
loop γ is not required to be based at a base point. The other difference is that a loop γ represents the
trivial element in H1pXq if for some g there is map Γ from Σ˝g, the Riemann surface of genus g with one
boundary component, to X such that the restriction of Γ to the boundary of Σ˝g is equal to γ.

3 Some Basic Properties of Homology Groups

Analogous to fundamental groups, homology groups are functorial. This means that any continuous map
f : X Ñ Y of topological spaces induces a homomorphism f˚ : HipXq Ñ HipY q. For example, if
γ : r0, 1s Ñ X gives an element of C1pXq, then f˚pγq :“ f ˝ γ : r0, 1s Ñ X gives an element of C1pY q.
Similarly, we can define maps f˚ : CipXq Ñ CipY q. These maps satisfy the identity f˚ ˝ Bi “ Bi ˝ f˚.
Thus we have an induced map f˚ : HipXq Ñ HipY q. As in the case of fundamental groups, if f is a
homeomorphism, or more generally a homotopy equivalence, then f˚ is an isomorphism.
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A useful tool for computing homology groups is the Mayer-Vietoris sequence. Suppose X is a
topological space, U and V are two open subspaces of X such that X “ U Y V . The Mayer-Vietoris
sequence is analogous to the Seifert-Van Kampen theorem: it allows us to obtain information about the
homology groups of X in terms of homology groups of U , V and U X V . Firstly recall that a sequence of
abelian groups and homomorphisms as below is a chain complex if fj`1 ˝ fj “ 0 for all choices of j:

. . .
fi`2
ÝÝÝÑ Ci`1

fi`1
ÝÝÝÑ Ci

fi
ÝÑ Ci´1

fi´1
ÝÝÝÑ Ci´2

fi´2
ÝÝÝÑ . . . . (3.1)

This sequence is exact if kerpfiq “ impfi`1q.

The Mayer-Vietoris sequence states that the homology groups of the spaces X , U , V and U X V fit
into an exact sequence of the following form:

. . .
di`1
ÝÝÝÑ HipU X V q

gi
ÝÑ HipUq ‘HipV q

hi
ÝÑ HipXq

di
ÝÑ Hi´1pU X V q

gi´1
ÝÝÑ . . .

. . .
d1
ÝÑ rH0pU X V q

g0
ÝÑ rH0pUq ‘ rH0pV q

h0
ÝÑ rH0pXq ÝÑ 0

Notice that the last three terms are 0-th reduced homology groups. The same statement holds if we
replace rH0 with H0. We can be more specific about the maps gi and hi. Let i : U Ñ X , j : U Ñ X ,
k : U X V Ñ U and l : U X V Ñ V be the inclusion maps and i˚ : HipUq Ñ HipXq, j˚ : HipUq Ñ
HipXq, k˚ : HipU X V q Ñ HipUq and l˚ : HipU X V q Ñ HipV q are the induced map at the level of
homology. Then we have:

gipαq “ pk˚pαq, l˚pαqq hipβ, σq “ i˚pβq ´ j˚pσq

The following proposition asserts that the first homology group is determined by the fundamental group.
In fact, it gives a rigorous meaning to the statement that the first homology group is the abelianization of
the fundamental group:

Proposition 3.2. Suppose X is a path connected space. The homology group H1pXq is isomorphic to the
abelianization of π1pXq. In fact, if Φ : π1pXq Ñ H1pXq is the map which maps a closed loop γ based at
the base point of X to the element of H1pXq which is given by γ, then Φ induces an isomorphism from
π1pXq{rπ1pXq, π1pXqs to H1pXq.

An n-dimensional manifold is a Hausdorff space which is locally homeomorphic to Rn. The surface
of g that you saw in the last class is an example of a 2-dimensional manifolds. More generally, we can
consider manifolds with boundary which are Hausdorff topological spaces locally homeomorphic to open
subspaces of the upper half-space Rě0ˆRn´1. The homology groups of manifolds are more constrained
than those of arbitrary topological spaces. For example, we have the following theorem:

Proposition 3.3. If X is an n-dimensional manifold (possibly with boundary), then all homology groups
HipXq with i ą n are trivial. If X has non-empty boundary, then HnpXq is also trivial.

Example 3.4. Let X be a space which has only one point. Since X is path connected, H0pXq “ Z.
Proposition 3.3 implies that all higher homology groups are trivial. Therefore, HipXq, for a contractible
space X , is non-trivial only if i “ 0, in which case it is equal to Z.
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Example 3.5. Propositions 3.2 and 3.3 imply that the homology groups of S1 are given as follows:

HipS
1q “

"

Z i “ 0, 1
0 i ą 1

. (3.6)

More generally, we can use the Mayer-Vietoris sequence to show that:

HipS
nq “

"

Z i “ 0, n
0 i ‰ 0, n

. (3.7)

Example 3.8. If K is a knot, then H1pS
3zKq “ Z (or equivalently H1pXpKqq “ Z). This follows

from the Mayer-Vietoris sequence applied to the decomposition of S3 as the union of S3zK and a
regular neighborhood of K. An examination of this argument show that we can even pick a generator for
H1pS

3zKq. Let D2 ˆ tptu be a disc in the regular neighborhood D2 ˆ S1 of K. Then the boundary of
D2 ˆ tptu gives a loop in S3zK which is a generator of H1pS

3zKq. This loop, often denoted by µ, is
called a meridian of the knot K.

Example 3.9. If Σ˝g is the (oriented) Riemann surface of genus g with 1-boundary component, then:

HipΣ
˝
gq “

$

&

%

Z i “ 0
Z2g i “ 1
0 i ą 2

. (3.10)

This follows from the observation from the last class that Σ˝g has the same homotopy type as the wedge of
2g copies of S1. We can also compute all homology groups of Σg by the tools that we have at this point.
Our computation of π1pΣgq from the last class and Proposition 3.2 show that H1pΣgq “ Z2g. We can
also use the Mayer-Vietoris exact sequence and (3.10) to show that H0pΣgq “ H2pΣgq “ Z.
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