Problem Set 11

- Let π : E → B be a covering map. We also assume that E is simply connected, namely π₁(E) is the trivial group. Show that any point x in B has a neighborhood U such that the inclusion map i : U → B induces the trivial map i_{*} : π₁(U, x) → π₁(B, x). That is to say any loop in U based at x is homologous to the trivial loop inside B. Any topological space with this property is called a *semi-locally simply connected* space.
- 2. Let *B* be a path connected and locally path connected topological space. Fix a base point b_0 for *B* and form the set:

 $\widetilde{X} := \{ (x, [\gamma]) \mid x \in B, \ \gamma : [0, 1] \to X \text{ is a continuous path from } b_0 \text{ to } x) \}$

We say $(x, [\gamma])$ is equivalent to $(x', [\gamma'])$ if x = x' and the closed path $\gamma * \overline{\gamma}'$, given by gluing γ to the reverse of γ' , represents the trivial element in $\pi_1(B, b_0)$. Let X be the set of equivalence classes of this equivalence relation. If (x, γ) represents an element of X and U is an open neighborhood of x in B, then define:

$$V([x,\gamma], U) := \{ [x',\gamma'] \in X \mid x' \in U, \ \gamma' = \gamma * \sigma \text{ where } \sigma \text{ is a path in } U \text{ from } x \text{ to } x' \}$$

- (a) Show that the sets $V([x, \gamma], U)$ for all $[x, \gamma] \in X$ and U define a topology on X.
- (b) Let $\pi: X \to B$ be the map that sends the class of $(x, [\gamma])$ to x. Show that π is continuous.
- (c) Show that $\pi_1(X) = 1$.
- (d) Suppose B is semi-locally simply connected. Show that π is a covering map.
- 3. (a) Suppose K₊ and K₋ are two links related by a crossing change. Show that there are simple closed curves γ₊ ⊂ S³\K₊ and γ₋ ⊂ S³\K₋ with lk(K₊, γ₊) = lk(K₋, γ₋) = 0 such that there is a homeomorphism f : S³\N(γ₊) → S³\N(γ₋) that maps K₊ to K₋. Here N(γ₊) and N(γ₋) are tubular neighborhoods of γ₊ and γ₋.
 - (b) Let U_1 be the unknot and K be an arbitrary knot. Show that for a positive integer n, there are disjoint simple closed curves $\gamma_1, \ldots, \gamma_n \subset S^3 \setminus K$ and disjoint simple closed curves $\gamma'_1, \ldots, \gamma'_n \subset S^3 \setminus U$ such that each γ_i (resp. γ'_i) has vanishing linking number with K (resp. the unknot U) and there is a homeomorphism

$$f: S^3 \backslash \bigcup_i N(\gamma_i) \to S^3 \backslash \bigcup_i N(\gamma'_i)$$

that maps K to U. Here $N(\gamma_1), \ldots, N(\gamma_n)$ are disjoint tubular neighborhoods of $\gamma_1, \ldots, \gamma_n$, and $N(\gamma'_1), \ldots, N(\gamma'_n)$ are disjoint tubular neighborhoods of $\gamma'_1, \ldots, \gamma'_n$.

(c) Let $\Phi_0: D^2 \times \mathbb{R} \to D^2 \times \mathbb{R}$ be the homeomorphism given by $\Phi_0(z,t) = (z,t+1)$. Use the previous part to show that for any knot K, there is n and for $1 \le i \le n$ and $j \in \mathbb{Z}$, there is a closed loop $\gamma_{i,j}$ with disjoint open neighborhoods $N(\gamma_{i,j})$ such that:

- (i) $\Phi_0(\gamma_{i,j}) = \gamma_{i,j+1}$,
- (ii) The space $X_{\infty}(K)$ associated to K is obtained by removing the solid tori $N(\gamma_{i,j})$ and glue them back in a different way.