Problem Set 3

1. It is a conjecture that Jones polynomial detects the unknot. That is to say, if a knot K has the same Jones polynomial as the unknot, then K has to be the unknot. However, there are distinct knots with the same Jone polynomials: show that the Jones polynomials of the knots in the following figure are equal to each other.

Figure 1: Two knots with the same Jones Polynomials

- 2. (a) Suppose L = L₁ ∪ L₂ is an oriented link with two connected components L₁ and L₂, and D = D₁ ∪ D₂ is a diagram for L with D_i being a diagram for L_i. We define the *linking number* of L₁ and L₂, denoted by lk(L₁, L₂) to be the half of the sum of the signs of the crossings of D which have one strand from D₁ and one strand from D₂. (Thus this definition is similar to the definition of writhe except that we only consider signs of some of the crossings, not all of them.) Show that lk(L₁, L₂) is independent of the choice of the diagram. Why is lk(L₁, L₂) always an integer?
 - (b) Suppose that L' is the oriented link obtained from $L = L_1 \cup L_2$ by changing the orientation of L_1 . Show that $J(L') = A^{12lk(L_1,L_2)}J(L)$.
- 3. Show that the crossing number of the connected sum of two alternating knots K_1 and K_2 is equal to the sum of the crossing numbers of K_1 and K_2 .