Problem Set 3

1. It is a conjecture that Jones polynomial detects the unknot. That is to say, if a knot K has the same Jones polynomial as the unknot, then K has to be the unknot. However, there are distinct knots with the same Jone polynomials: show that the Jones polynomials of the knots in the following figure are equal to each other.

Figure 1: Two knots with the same Jones Polynomials
2. (a) Suppose $L=L_{1} \cup L_{2}$ is an oriented link with two connected components L_{1} and L_{2}, and $D=D_{1} \cup D_{2}$ is a diagram for L with D_{i} being a diagram for L_{i}. We define the linking number of L_{1} and L_{2}, denoted by $\mathrm{lk}\left(L_{1}, L_{2}\right)$ to be the half of the sum of the signs of the crossings of D which have one strand from D_{1} and one strand from D_{2}. (Thus this definition is similar to the definition of writhe except that we only consider signs of some of the crossings, not all of them.) Show that $\operatorname{lk}\left(L_{1}, L_{2}\right)$ is independent of the choice of the diagram. Why is $\operatorname{lk}\left(L_{1}, L_{2}\right)$ always an integer?
(b) Suppose that L^{\prime} is the oriented link obtained from $L=L_{1} \cup L_{2}$ by changing the orientation of L_{1}. Show that $J\left(L^{\prime}\right)=A^{121 \mathrm{k}\left(L_{1}, L_{2}\right)} J(L)$.
3. Show that the crossing number of the connected sum of two alternating knots K_{1} and K_{2} is equal to the sum of the crossing numbers of K_{1} and K_{2}.

