Problem Set 6

1. Compute the homology groups of the surface $\Sigma_{g, d}$ of genus g with d boundary components.
2. Let Δ be the triangle given in Figure 1. We also assume that each edge of Δ is identified with the interval $[0,1]$ such that the orientation of the edge is given by moving along the edge from 0 to 1 .
(a) Show that $\Sigma_{g, 1}$ admits an oriented triangulation. An oriented triangulation is given by a finitely many homeomorphisms $\left\{f_{i}: \Delta \rightarrow \Sigma_{g, 1}\right\}_{i}$ such that
(i) $\Sigma_{g, 1}=\bigcup_{i} f_{i}(\Delta)$;
(ii) For any i, the restriction of f_{i} to the interior of Δ is disjoint from the image of the remaining homeomorphisms. The restriction of f_{i} to the interior of each edge e_{r} of Δ is either disjoint from the image of the remaining homeomorphisms or there is exactly one other homeomorphism j and one edge e_{s} of Δ such that $f_{i}\left|e_{r}(t)=f_{j}\right| e_{s}(1-t)$.
(b) Suppose X is a topological space and $\gamma: S^{1} \rightarrow X$. (Regard γ as a map from $[0,1]$ to X such that $\gamma(0)=\gamma(1)$.) Suppose there is a map $\Gamma: \Sigma_{g, 1} \rightarrow X$ such that $\left.\Gamma\right|_{\partial \Sigma_{g, 1}}=\gamma$. Show that γ represents the trivial element of $H_{1}(X)$. (Hint: Start from the definition of $H_{1}(X)$ and show that γ belongs to the image of the map $\partial_{2}: C_{2}(X) \rightarrow C_{1}(X)$.)

Figure 1: The triangle Δ

