Problem Set 6

- 1. Compute the homology groups of the surface $\Sigma_{g,d}$ of genus g with d boundary components.
- 2. Let Δ be the triangle given in Figure 1. We also assume that each edge of Δ is identified with the interval [0, 1] such that the orientation of the edge is given by moving along the edge from 0 to 1.
 - (a) Show that $\Sigma_{g,1}$ admits an oriented triangulation. An oriented triangulation is given by a finitely many homeomorphisms $\{f_i : \Delta \to \Sigma_{g,1}\}_i$ such that
 - (i) $\Sigma_{g,1} = \bigcup_i f_i(\Delta);$
 - (ii) For any *i*, the restriction of f_i to the interior of Δ is disjoint from the image of the remaining homeomorphisms. The restriction of f_i to the interior of each edge e_r of Δ is either disjoint from the image of the remaining homeomorphisms or there is exactly one other homeomorphism *j* and one edge e_s of Δ such that $f_i|_{e_r}(t) = f_j|_{e_s}(1-t)$.
 - (b) Suppose X is a topological space and $\gamma: S^1 \to X$. (Regard γ as a map from [0, 1] to X such that $\gamma(0) = \gamma(1)$.) Suppose there is a map $\Gamma: \Sigma_{g,1} \to X$ such that $\Gamma|_{\partial \Sigma_{g,1}} = \gamma$. Show that γ represents the trivial element of $H_1(X)$. (Hint: Start from the definition of $H_1(X)$ and show that γ belongs to the image of the map $\partial_2: C_2(X) \to C_1(X)$.)

Figure 1: The triangle Δ