Problem Set 8

The goal of this problem is to show that the two definitions of linking number given in Problem Set 3 and Lecture 13 are the same. Suppose K₁ and K₂ are two oriented links in S³, which are disjoint from each other. Then K₂ (resp. K₁) determines an element of the homology class of H₁(S³\K₁) (resp. H₁(S³\K₂)). We also assume that a diagram D₁ ∪ D₂ of K₁ ∪ K₂ is given. We change K₂ in a neighborhood of a crossing as in Figures 1a or 1b to obtain K'₂.

Figure 1: In these figures, the black (resp. red) components are part of the diagram D_1 (resp. D_2) for the link K_1 (resp. K_2).

- (a) Show that K₂ and K'₂ have the same homology class in H₁(S³\K₁). In particular, the linking numbers lk(K₁, K₂) and lk(K₁, K'₂), in the sense of Lecture 13, are equal to each other. (Hint: Recall that general properties of homology groups imply that you just need to find a map f : Σ → S³\K₁ for an appropriate surface such that the boundary of Σ is equal to K₂ and -K'₂ where the latter is K'₂ with the reverse orientation.)
- (b) Show that the linking numbers $lk(K_1, K_2)$ and $lk(K_1, K'_2)$, in the sense of Problem Set 3, are equal to each other.
- (c) Show that if the diagrams D_1 and D_2 of K_1 and K_2 do not have any crossing with each other, then the linking numbers of K_1 and K_2 , in both senses, are equal to zero.
- (d) Use the last three parts to show that the two definitions of linking number agree with each other. (Hint: See Problem 3 in Problem Set 2.)
- 2. Suppose M is a finitely generated abelian group. Determine all elementary ideals of M.
- 3. (a) Compute the Alexander polynomial of the figure-eight knot.
 - (b) Compute the Alexander polynomial of the torus knot $T_{2,p}$.