## Problem Set 8

1. The goal of this problem is to show that the two definitions of linking number given in Problem Set 3 and Lecture 13 are the same. Suppose $K_{1}$ and $K_{2}$ are two oriented links in $S^{3}$, which are disjoint from each other. Then $K_{2}$ (resp. $K_{1}$ ) determines an element of the homology class of $H_{1}\left(S^{3} \backslash K_{1}\right)$ (resp. $H_{1}\left(S^{3} \backslash K_{2}\right)$ ). We also assume that a diagram $D_{1} \cup D_{2}$ of $K_{1} \cup K_{2}$ is given. We change $K_{2}$ in a neighborhood of a crossing as in Figures 1a or 1b to obtain $K_{2}^{\prime}$.


Figure 1: In these figures, the black (resp. red) components are part of the diagram $D_{1}$ (resp. $D_{2}$ ) for the link $K_{1}\left(\right.$ resp. $\left.K_{2}\right)$.
(a) Show that $K_{2}$ and $K_{2}^{\prime}$ have the same homology class in $H_{1}\left(S^{3} \backslash K_{1}\right)$. In particular, the linking numbers $1 \mathrm{k}\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$ and $\operatorname{lk}\left(\mathrm{K}_{1}, \mathrm{~K}_{2}^{\prime}\right)$, in the sense of Lecture 13, are equal to each other. (Hint: Recall that general properties of homology groups imply that you just need to find a map $f: \Sigma \rightarrow S^{3} \backslash K_{1}$ for an appropriate surface such that the boundary of $\Sigma$ is equal to $K_{2}$ and $-K_{2}^{\prime}$ where the latter is $K_{2}^{\prime}$ with the reverse orientation.)
(b) Show that the linking numbers $\operatorname{lk}\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$ and $\operatorname{lk}\left(\mathrm{K}_{1}, \mathrm{~K}_{2}^{\prime}\right)$, in the sense of Problem Set 3, are equal to each other.
(c) Show that if the diagrams $D_{1}$ and $D_{2}$ of $K_{1}$ and $K_{2}$ do not have any crossing with each other, then the linking numbers of $K_{1}$ and $K_{2}$, in both senses, are equal to zero.
(d) Use the last three parts to show that the two definitions of linking number agree with each other. (Hint: See Problem 3 in Problem Set 2.)
2. Suppose $M$ is a finitely generated abelian group. Determine all elementary ideals of $M$.
3. (a) Compute the Alexander polynomial of the figure-eight knot.
(b) Compute the Alexander polynomial of the torus $\operatorname{knot} T_{2, p}$.

