Problem Set 9

- 1. Show that the Alexander polynomial of the Whitehead double of any knot K (Problem 2 in Problem Set 7) is equal to 1.
- 2. (a) Show that the genus of the twist knot K_n from Problem 1 in Problem Set 5 is at most 1.
 - (b) Compute the Alexander polynomial of the twist knot K_n .
- 3. Characterize all possible Alexander polynomials for a knot with genus 1.
- 4. Suppose K is a knot such that the exterior X(K) is given as follows. There is a homeomorphism f of the surface $\Sigma_{g,1}$ which is identity in a neighborhood of the boundary and:

$$X(K) \cong \{ (x,t) \in \Sigma_{q,1} \times [0,1] \mid (x,1) \sim (f(x),0) \}.$$

Note that any subspace of the form $\Sigma_{g,1} \times \{t\}$ gives a Seifert surface for K. Any such knot is called a fibered knot. For example, trefoil is a fibered knot. (You don't need to show this.)

- (a) The homeomorphism induces an isomorphism f_* from the abelian group $H_1(\Sigma_{g,1}) \cong \mathbb{Z}^{2g}$ to itself. Characterize the Alexander polynomial of K in terms of f_* .
- (b) Show that the genus of K is equal to g.
- (c) Show that the coefficient of the largest (and hence the smallest) power of t in $\Delta_K(t)$ is ± 1 .
- (d) Show that the twist knot K_n , for $n \neq -1, 0, 1$, is not fibered.