Problem Set 9

1. Show that the Alexander polynomial of the Whitehead double of any knot K (Problem 2 in Problem Set 7) is equal to 1 .
2. (a) Show that the genus of the twist knot K_{n} from Problem 1 in Problem Set 5 is at most 1 .
(b) Compute the Alexander polynomial of the twist knot K_{n}.
3. Characterize all possible Alexander polynomials for a knot with genus 1.
4. Suppose K is a knot such that the exterior $X(K)$ is given as follows. There is a homeomorphism f of the surface $\Sigma_{g, 1}$ which is identity in a neighborhood of the boundary and:

$$
X(K) \cong\left\{(x, t) \in \Sigma_{g, 1} \times[0,1] \mid(x, 1) \sim(f(x), 0)\right\} .
$$

Note that any subspace of the form $\Sigma_{g, 1} \times\{t\}$ gives a Seifert surface for K. Any such knot is called a fibered knot. For example, trefoil is a fibered knot. (You don't need to show this.)
(a) The homeomorphism induces an isomorphism f_{*} from the abelian group $H_{1}\left(\Sigma_{g, 1}\right) \cong \mathbb{Z}^{2 g}$ to itself. Characterize the Alexander polynomial of K in terms of f_{*}.
(b) Show that the genus of K is equal to g.
(c) Show that the coefficient of the largest (and hence the smallest) power of t in $\Delta_{K}(t)$ is ± 1.
(d) Show that the twist knot K_{n}, for $n \neq-1,0,1$, is not fibered.

