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1 Introduction

1.1 Course blurb

Around 1800, the French mathematician Jean-Baptiste Joseph Fourier accompanied Napoleon

through Egypt. Egypt was very hot, and Fourier became interested in heat, so he developed

Fourier series to solve the differential equation known as the “heat equation.” (This is a

story I heard from Elias Stein, the mathematician who taught me Fourier analysis.)

The central idea of Fourier series is to decompose a periodic function into pure oscillations

(i.e., sine waves):

f(x) = c0 +
∞∑
n=1

cn cosnx+
∞∑
n=1

bn sinnx (1.1)

This is what our ears do when we listen to music; it explains why the C-sharp of a piano

sounds different from same C-sharp of a violin. (In class, we’ll see this with some demon-

strations using the software Audacity.)

Fourier analysis has wide applications to other areas, including signal processing (e.g.,

wireless communication), number theory (e.g., Dirichlet’s theorem on primes in arithmetic

progressions), quantum mechanics (e.g., the Heisenberg uncertainty principle, which Neeraja

will cover in Week 4), and Boolean functions (as in Tim!’s Week 1 class).

In this class, we will learn how to find the Fourier series of any periodic function, prove

some basic properties, and see how this can be used to solve differential equations. We will

also look at the Fourier transform, which is an analogue of Fourier series for functions which

are not periodic. With the remaining time, we’ll discuss some of the many applications.

1.2 What Fourier analysis is not

https://www.smbc-comics.com/?id=2874

1.3 Warning about (lack of) rigor

Mathematical rigor will not be a focus of this course. Because we only have 5 days, if we tried

to do everything rigorously, we would not have time to appreciate the beautiful theorems

and applications of Fourier analysis. So instead, I’m going to give you some “proofs” that

contain some unjustified steps, such as pretending that infinite sums work just like finite

sums. Often, these incomplete/incorrect arguments are actually more useful in getting a feel

for a subject. Recall that a large part of calculus was developed over hundred years before

the modern definition of a limit was introduced.
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If you still don’t like this idea, I’d recommend taking a look at Terry Tao’s blog post titled

“There’s more to mathematics than rigour and proofs”: https://terrytao.wordpress.

com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

For those who want to practice writing rigorous analysis proofs, I will include some

exercises on how to make certain arguments rigorous.

Fishy statements will be marked with a fish ( ).

1.4 Connections to other Mathcamp courses

Fourier analysis shows up in some form in the following classes (and perhaps more):

1. Week 1: Tim!’s class on boolean functions

2. Week 2: Neeraja’s class on Weierstrass approximation

3. Week 2: Ben’s class on the first uncountable ordinal

4. Week 4: Neeraja’s class on the uncertainty principle

1.5 Reference

I highly recommend Fourier analysis by Stein and Shakarchi. Stein taught me Fourier

analysis when I was at Princeton and his presentation was amazing. In fact, that was the

class that made me start to consider specializing in analysis.

One great thing about the textbook is that it does not require much mathematical back-

ground – knowing some basic analysis would be enough. In contrast, most other books on

the subject require at least measure theory and Lebesgue integration.

2 Day 1

2.1 The square wave

Definition 2.1. Let L > 0. A function f : R → C is L-periodic if f(x + L) = f(x). (Note

this means that every 1-periodic function is also 2-periodic.)

The statement “Let f : R/LZ→ C” is essentially the same as saying “Let f : R→ C be

an L-periodic function.” This is because you can think of R/LZ as the set of real numbers,

except you identify together two numbers if they differ by an integer multiple of L. (If this

explanation doesn’t make sense, don’t worry about it.)
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Let’s start with a question: It is clear that a function like 5 + cosx+ sin 2x− 4 sin 3x is

2π-periodic. Given a 2π-periodic function R→ C, can we write it in the following form?

c0 +
∞∑
n=1

cn cosnx+
∞∑
n=1

bn sinnx, where c0, (cn)n, (bn)n ∈ C (2.1)

Let’s jump straight into an example. Define f : R→ C by first setting:

f(x) =


1 if x ∈ (0, π)

−1 if x ∈ (−π, 0)

0 if x = −π, 0, π

(2.2)

and then extend f to a 2π-periodic function on R. This function is called a square wave.

Let’s assume that we can write f in the form (2.1). ( ) If we make this assumption,

can we figure out what the coefficients cn, bn must be?

First of all, since f is an odd function, all the cn should equal 0, leaving us with

f(x) =
∞∑
n=1

bn sinnx (2.3)

Next, here is a crucial observation:

1. For all integers n, we have
∫ π
−π sin2 nx dx = π.

2. For all integers m,n with m 6= n, we have
∫ π
−π sinmx sinnx dx = 0.

This means that if we multiply both sides of (2.3) by sinx and then integrate both sides,

we should get ( ):∫ π

−π
f(x) sinx dx =

∫ π

−π

∞∑
n=1

bn sinnx sinx dx (2.4)

= b1

∫ π

−π
sin2 x dx+

∞∑
n=2

bn

∫ π

−π
sinnx sinx dx (2.5)

= πb1 (2.6)

(Warning: I did not justify why we could pull the infinite sum out of the integral. In general

you cannot do this.)

So we get

b1 =
1

π

∫ π

−π
f(x) sinx dx. (2.7)
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By the same reasoning, we have, for all n = 1, 2, . . .,

bn =
1

π

∫ π

−π
f(x) sinnx dx. (2.8)

Recalling the definition of f given in (2.2), these integrals are easy to evaluate. We get

bn =

 4
nπ

if n is odd

0 if n is even
(2.9)

so we end up with

f(x) =
4

π

∞∑
n=0

1

2n+ 1
sin(2n+ 1)x =

4

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+ · · ·

)
(2.10)

If you plot some partial sums, you’ll see that they do appear to get closer to the square

wave. For example: https://www.wolframalpha.com/input/?i=4%2Fpi+%28+sin+x+%2B+

1%2F3+sin+3x+%2B+1%2F5+sin+5x+%2B+1%2F7+sin+7x+%29

2.2 Demonstration of sound waves with software

For these demonstrations, start with low volume! There have been times when I accidentally

generated a very loud tone while using earbuds.

2.2.1 Increasing the frequency until you hear a tone

Go here: https://www.szynalski.com/tone-generator/

1. Click on the sine wave on the bottom right corner and change it to “sawtooth.”

2. Click on the frequency and chance it to 1 Hz.

3. (Make sure your volume is very low! And don’t use headphones at first! You might

hurt your ears if the sound is very loud!) Click on “Play.” You should hear one click

a second (since 1 Hz means one cycle per second).

4. Gradually increase the frequency. Eventually the clicks will sound like a very low tone.

2.2.2 Additive synthesis

To see how sine/cosine waves of different frequencies combine to form other waves: https:

//teropa.info/harmonics-explorer/ (You need to click “unmute” if you want to hear the

sound.) One interesting thing you can do is start with the “base sine” wave (with the sound

unmuted). Then click on “square” and “sawtooth.” You can see (and hear!) the higher

frequencies being added in!
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2.2.3 Audacity

Another software is called Audacity. It is open source and cross platform. Here is an example

of what you can do with Audacity. (I am using version 2.2.1.)

1. Generate → Tone. For waveform, choose Square. For frequency, put 220 Hz.

2. Select a part of the generated wave.

3. Analyze → Plot spectrum.

4. The Audacity documentation recommends using “Hann” for the function.

You should see the a chart with peaks at frequencies α, 3α, 5α, 7α, . . ., where α is the

fundamental frequency 220 Hz. (Note that the y-axis is measured in decibels, which is a

logarithmic scale.)

You can also generate tones with other waveforms and see which frequencies have peaks.

For example, if you choose a sine wave, there should be a single peak. You can also record

your own sound files, e.g., tone of an instrument, you singing, random noise, and analyze

those.

This page describes what the Plot Spectrum feature actually computes: https://manual.

audacityteam.org/man/plot_spectrum.html

In music, when you have a complicated wave which is made up of sine waves of frequencies

α, 2α, 3α, . . ., you can write this as f(x) =
∑∞

n=1 an sin(2πnαx). The lowest frequency α is

called the fundamental frequency determines the pitch. The higher frequences 2α, 3α, . . .

are called higher harmonics or overtones. The amplitudes an determines the timbre of the

sound. A middle-C square wave and a middle-C on a piano sound different because of how

much of each higher harmonic is present in the sound wave.

Fun fact 2.2. Some basic waveforms are the square wave, pulse wave (a.k.a. rectangular

wave), sawtooth wave, and triangle wave. See Exercise 3.1 for some of these waves. Sound

processors of many early video game systems (e.g., NES) primarily generated these types of

waves because they are very simple and require little memory. This gave well-known tunes

such as the Super Mario Bros. theme their distinctive character.

2.3 Fourier series

(Note: We define
∑∞

n=−∞ an to be limN→∞
∑N

n=−N an.)
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Actually, (2.1) could be made cleaner if we introduce complex exponential functions.

Recall Euler’s formula: eix = cosx+ i sinx. Using this, we have

c0 +
∞∑
n=1

cn cosnx+
∞∑
n=1

bn sinnx =
∞∑

n=−∞

ane
inx (2.11)

where (an)∞n=−∞, (bn)∞n=1, (cn)∞n=0 satisfy
c0 = a0

cn = an + a−n for n ≥ 1

bn = i(an − a−n) for n ≥ 1

. (2.12)

Exercise 3.2 asks you to verify (2.12).

For m,n ∈ Z, observe that

1

2π

∫ π

−π
eimxe−inx dx =

1 if m = n

0 if m 6= n
(2.13)

Protip 2.3. The constant i is just like any other constant. The usual derivative and integral

rules apply. For example, d
dx
einx = ineinx and

∫
einx dx = einx

in
+ C.

Now, suppose we have a 2π-periodic function f : R → C. And let’s assume that it can

be written in the form f(x) =
∑∞

n=−∞ ane
inx. Then, by the same (non-rigorous) reasoning

as above with the sine function, we have an = 1
2π

∫ π
−π f(x)e−inx dx

Definition 2.4. Let f : [−π, π] → C be a Riemann integrable 2π-periodic function. The

Fourier coefficients of f are the numbers (an)∞n=−∞ given by

an =
1

2π

∫ π

−π
f(x)e−inx dx. (2.14)

The Fourier series (or trigonometric series) of f is defined to be
∑∞

n=−∞ ane
inx. We write

f(x) ∼
∞∑

n=−∞

ane
inx (2.15)

to indicate that
∑∞

n=−∞ ane
inx is the Fourier series of f .

Definition 2.5. A sum of the form
∑∞

n=−∞ ane
inx is called a Fourier series or a trigonometric

series. A finite sum, e.g.
∑N

n=−N ane
inx is called a trigonometric polynomial.

Note that we don’t write f(x) =
∑∞

n=−∞ ane
inx. This is because we haven’t actually

proved that these two are the same function. In fact, there are situations where they aren’t

equal... See Section 2.5 for more information.
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Fun fact 2.6. We can try to understand Fourier series from the point of view of linear

algebra. Recall that the standard inner product (or dot product) of two vectors ~u,~v ∈ Cn is

given by

〈~u,~v〉 =
n∑
i=1

uivi. (2.16)

If f and g are continuous functions [−π, π]→ C, we can define an inner product via

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx. (2.17)

As with vectors in Cn, we say two functions are orthogonal if 〈f, g〉 = 0. We can define the

magnitude a function by 〈f, f〉.
Define en(x) = einx, so that (2.13) becomes

〈em, en〉 =

1 if m = n

0 if m 6= n
. (2.18)

In linear algebra terms, the set {en : n ∈ Z} is an orthonormal set. That is, they all have

magnitude 1 and are orthogonal to each other. Also, (2.14) can be rephrased as an = 〈f, en〉.
See Exercise 3.7 if you would like to review some properties of orthogonal vectors in a

more familiar setting.

2.4 Uniqueness of Fourier series

Can two different functions have the same Fourier series? Here’s a simple example to show

the answer in general is “no.” Let f : [−π, π] → C be the constant 0 function and let

g : [−π, π] → C be defined by g(0) = 1 and g(x) = 0 otherwise. Then recalling (2.14), the

Fourier coefficients of f and g are both an = 0.

But maybe that seemed like a silly counterexample. In fact, those are the only types of

counterexamples, as the following theorem states.

Theorem 2.7. Suppose f and g are functions with the same Fourier coefficients. If f and

g are both continuous at x0, then f(x0) = g(x0).

This immediately implies the following.

Corollary 2.8. If f and g are continuous functions with the same Fourier coefficients, then

f = g.

Proof of Theorem 2.7. The proof is kind of technical, so we’ll skip it. If you’d like to prove

it yourself, see Exercise 3.9.
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2.5 Convergence of Fourier series

In general, convergence of Fourier series is a difficult topic. You can tell it is difficult based

on how long the Wikipedia article is: https://en.wikipedia.org/wiki/Convergence_of_

Fourier_series.

Suppose f is a continuous function and f ∼
∑
ane

inx. Note that |aneinx| = |an|. So

if
∑∞

n=−∞ |an| < ∞, then by the Weierstrass M -test, the series
∑∞

n=−∞ ane
inx converges

uniformly. Note however that this argument does not imply that the series converges uni-

formly to f . But if f is continuous, then in fact it does. The extra ingredient you need is

mean-square convergence ((2.19) below).

The previous paragraph also implies that if f has a jump discontinuity, then
∑
|an| =∞.

(Exercise 3.11 asks you to work out the details.)

Here are some facts about convergence and non-convergence of Fourier series, all stated

without proof. (In all of the following, f is 2π-periodic.)

1. Some good news:

(a) If a function f is differentiable, then
∑
|an| < ∞, and hence the Fourier series

converges uniformly to f . See Exercise 3.10 for a slightly weaker statement. Also,

see Fun fact 2.9 for a stronger statement.

(b) If f is integrable, then we have mean-square convergence (a.k.a. L2 convergence):

lim
N→∞

1

2π

∫ π

−π

∣∣∣∣∣f(x)−
N∑

n=−N

ane
inx

∣∣∣∣∣
2

dx = 0 (2.19)

The proof of this is outlined in Exercise 5.21.

2. Some bad news:

(a) There exists a continuous function f and a point x such that the Fourier series

of f does not converge at x. Constructing a counterexample is very difficult. See

Stein and Shakarchi, Fourier analysis, Chapter 3, Section 2.2.

The “good news” section above tells us in many cases, the Fourier series of f does indeed

behave very nicely.

Fun fact 2.9. Actually, differentiability is sufficient but not necessary to conclude
∑
|an| <

∞. The following is true.

1. A function is α-Hölder continuous if

∃M s.t. ∀x,∀y, |f(x)− f(y)| ≤M |x− y|α. (2.20)
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If f is α-Hölder continuous for some α > 1
2
, then

∑
|an| < ∞, and hence the Fourier

series converges uniformly to f .

2. If f is α-Hölder continuous for some 0 < α ≤ 1
2
, then the Fourier series converges

uniformly to f (but it is not necessarily true that
∑
|an| <∞).

I actually was not aware of these facts until I started writing these notes. I found them at

https://math.stackexchange.com/a/10816. This perhaps suggest that you don’t need to

worry about the details of convergence too much.

2.6 Basic properties of Fourier series

Here we prove some basic properties of Fourier series. I have included a “fishy proof” which

is not quite rigorous, but gives you an idea of why something should be true.

Theorem 2.10. Let f : R → C be a 2π-periodic function with Fourier coefficients (an)n.

Suppose that f ′ exists and is integrable. Then f ′ has Fourier coefficients (inan)n.

Fishy proof. Suppose we have an equality ( ):

f(x) =
∞∑

n=−∞

ane
inx. (2.21)

Now differentiate both sides. For the right side, differentiate term by term ( ).

f ′(x) =
∞∑

n=−∞

d

dx
ane

inx =
∞∑

n=−∞

inane
inx (2.22)

Thus, we see the Fourier coefficients of f ′ are (inan)n.

Real proof. Let bn be the nth Fourier coefficient of f ′. Then, by definition,

bn =
1

2π

∫ π

−π
f ′(x)e−inx dx (2.23)

Now integrate by parts to get

1

2π

∫ π

−π
f ′(x)e−inx dx =

in

2π

∫ π

−π
f(x)e−inx dx = inan (2.24)

(I skipped some calculations.)

The following theorem says that if you increase the speed of a sound wave by a factor of

M , then the frequencies increase by a factor of M .
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Theorem 2.11. Let f : R → C be a 2π-periodic function with Fourier coefficients (an)n.

Let M ∈ Z>0 and set g(x) = f(Mx). If (bn)n denotes the Fourier coefficients of g, then

bn =

an/M if M | n (i.e., if M divides n)

0 otherwise
(2.25)

Fishy proof. Suppose we have an equality ( ): f(x) =
∑∞

n=−∞ ane
inx. Then

g(x) = f(Mx) =
∞∑

n=−∞

ane
inMx (2.26)

which implies the Fourier coefficients of g are given by (2.25).

Real proof. Exercise 3.8.

3 Day 1 exercises

This class is “homework recommended.” But there are several problems that you should do

(or know how to do) so that you can get the most out of the lectures. You are definitely

not expected to do all the problems – there are too many! I’ve included problems on many

different topics and in many different difficulty levels, with the hope that every camper will

find some interesting problems to think about.

3.1 Fourier series

Exercise 3.1. ( ) This problem asks you to adapt the method we used in Section 2.1 to

find the Fourier series for other waves.

1. Define the sawtooth wave by

f(x) =

x if x ∈ (−π, π)

0 if x = −π, π
(3.1)

and extend to a 2π-periodic function on R. By the same method we used for the square

wave, find the Fourier series in sine-cosine form (2.1) for the sawtooth wave.

2. Define the triangle wave by

f(x) = |x| − π

2
if x ∈ [−π, π] (3.2)

Then extend it to be a 2π-periodic function. Find the Fourier series in sine-cosine form

(2.1) for the triangle wave.

12



Also, some remarks.

1. You can use Wolfram Alpha to evaluate some of the integrals for you (e.g., https://

www.wolframalpha.com/input/?i=integrate+x*sin%28n*x%29+dx+from+-pi+to+pi)

2. You can check your answer by plotting some partial sums.

3. Note that for both the square wave and the sawtooth wave, the sum of the coefficients

does not converge absolutely. This is related to Exercise 3.11. However, for the triangle

wave, the coefficients do converge absolutely. This is because the triangle wave is 1-

Hölder continuous (a.k.a. Lipschitz continuous). See Fun fact 2.9.

Exercise 3.2. ( ) Verify (2.12).

Exercise 3.3. ( ) Let f be the square wave (see (2.2)). Calculate the Fourier coefficients

an of f using the definition of Fourier coefficients (2.14). You should get:

an =

 2
inπ

if n is odd

0 if n is even
(3.3)

Check that this is consistent with (2.10) and (2.12).

Exercise 3.4. ( ) Let f be the triangle wave (see (3.2)). Calculate the Fourier coefficients

of f using any way you like. Here are some ways. (If you do at least two, make sure your

answers agree!)

1. By the definition of Fourier coefficients (2.14).

2. By converting the sine/cosine series from Exercise 3.1 into the (complex) Fourier series

with (2.12).

3. By Exercise 3.3 and Theorem 2.10.

Exercise 3.5. ( ) Take (2.10) and plug in x = π/2. What do you get? (This is known as

the Leibniz formula for π.) Can you discover anything else interesting by plugging in other

values of x into any of the Fourier series we have calculated?

Exercise 3.6. ( ) So far we’ve just been working with 2π-periodic functions. Suppose f is

an L-periodic function instead. What should the analogue of Definition 2.4 be in this case?

(Hint: most of it will look the same, except you will need to insert Ls in some places.)

Exercise 3.7. ( ) Let ~v1 = (1, 2, 1), ~v2 = (1,−1, 1), ~v3 = (1, 0,−1).
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1. Verify that 〈~v1, ~v2〉 = 〈~v1, ~v3〉 = 〈~v2, ~v3〉 = 0. (Recall that 〈·, ·〉 denotes the inner

product, a.k.a. dot product. For example, 〈(1, 2, 3), (4, 5, 6)〉 = 1 · 4 + 2 · 5 + 3 · 6 = 32.)

2. Suppose (1, 0, 0) = c1~v1 + c2~v2 + c3~v3 for some constants c1, c2, c3. Show that c1 = 1/6

without solving a system of linear equations. The technique here is similar to that of

Section 2.1.

Exercise 3.8. ( ) Prove Theorem 2.11.

3.2 Uniqueness and convergence of Fourier series

Exercise 3.9. ( ) Suppose f : R/2πZ → C is a function and all of its Fourier

coefficients are 0, i.e.,

1

2π

∫ π

−π
f(x)e−inx dx = 0 for all n ∈ Z. (3.4)

Show that if f is continuous at x0, then f(x0) = 0. (This implies Theorem 2.7.)

Hint: (This is an intentionally vague hint.) Suppose for contradiction that f(x0) 6= 0.

WLOG, assume x0 = 0 and f(0) > 0. Choose ε > 0 appropriately. Then∫ π

−π
f(x)(ε+ cosx)n dx = 0 for n = 0, 1, 2, . . . , (3.5)

but also

lim
n→∞

∫ π

−π
f(x)(ε+ cosx)n dx =∞, (3.6)

which is a contradiction.

Exercise 3.10. ( ) In this exercise we’ll prove rigorously that if f ′′ is continuous, then

the Fourier series of f converges. This is weaker than the stated result about differentiable

functions stated in Section 2.5, but it’s much easier to prove.

Suppose f : R→ C is 2π-periodic and f ′′ is continuous.

1. Prove that the Fourier coefficients of f satisfy

|an| ≤
1

n2
· 1

2π

∫ π

−π
|f ′′(x)| dx (3.7)

2. (This requires some analysis background.) Prove that the Fourier series of f converges

uniformly.

Exercise 3.11. ( ) (This requires some analysis background.) Let f be a function with

Fourier coefficients (an). Suppose f has a jump discontinuity. That is, suppose there is a

point c such that limx→c− f(x) 6= limx→c+ f(x). Show that
∑
|an| diverges.
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4 Day 2

4.1 Parseval’s identity

Recall the following about vectors.

Theorem 4.1 (Pythagorean theorem). If (~en)Nn=1 are orthonormal unit vectors in CN , and

~v =
∑N

n=1 an~en for some an ∈ C, then

‖~v‖2 =
N∑
n=1

|an|2 (4.1)

Proof. We can use the dot product of two vectors, which we’ll denote 〈·, ·〉.

‖~v‖2 = 〈~v,~v〉 (4.2)

=

〈
N∑
n=1

an~en,
N∑
m=1

am~em

〉
(4.3)

=
N∑
n=1

N∑
m=1

〈an~en, am~em〉 (4.4)

=
N∑
n=1

N∑
m=1

anam 〈~en, ~em〉 (4.5)

Since the vectors (~en) are orthonormal, we have

〈~en, ~em〉 =

1 if n = m

0 if n 6= m
(4.6)

so in the double sum above, we only need to keep the terms where n = m. This gives

‖~v‖2 =
N∑
n=1

|an|2 (4.7)

which completes the proof

Now we can state Parseval’s identity, which you can think of as the “Pythagorean theorem

for Fourier series.”

Theorem 4.2 (Parseval’s identity). If f is a continuous 2π-periodic function with Fourier

coefficients (an)∞n=−∞,

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|an|2 (4.8)
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Proof. ( ) We can define an inner product on the space of continuous functions defined on

[−π, π]. See Fun fact 2.6. Let en(x) = einx. Note that {en : n ∈ Z} is an orthonormal set

with respect to this inner product (see (2.18)).

The left hand side of (4.8) is 〈f, f〉. The Fourier series of f is
∑∞

n=−∞ anen. Now we can

repeat the proof of Theorem 4.1.

〈f, f〉 =

〈
∞∑

n=−∞

anen,

∞∑
m=−∞

amem

〉
(4.9)

=
∞∑

n=−∞

∞∑
m=−∞

anam 〈en, em〉 (4.10)

=
∞∑

n=−∞

|an|2 (4.11)

That looks nice, but it was not a rigorous proof. There are some issues:

1. It is not necessarily true that a function f equals its Fourier series. So (4.9) is not

justified.

2. You can’t necessarily interchange sums and integrals when you have an infinite sum.

So (4.10) is not justified.

If you want to fill in the gaps, you need to be more careful. See Exercise 5.21.

The same type of orthogonality argument gives the following version o f Parseval’s identity

for two different functions.

Theorem 4.3 (Parseval’s identity for two functions). If f and g are continuous 2π-periodic

functions with Fourier coefficients (an)∞n=−∞ and (bn)∞n=−∞ respectively,

1

2π

∫ π

−π
f(x)g(x) dx =

∞∑
n=−∞

anbn (4.12)

Note that Theorem 4.2 is just a special case of Theorem 4.3.

4.2 Convolutions

For two 2π-periodic functions f and g, we define their convolution by

(f ∗ g)(x) =
1

2π

∫ π

−π
f(y)g(x− y) dy (4.13)

In some sense, if we start with a function f and then convolve it with another function g,

this can have an “averaging effect” on f . See Exercise 5.5 for more.

Here are some basic properties of convolutions. Taken together, they say that the con-

volution kind of behaves like a “product” of two functions.
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Theorem 4.4 (Basic properties of convolutions). Let f, g, h be any 2π-periodic functions

and c any constant.

1. f ∗ g = g ∗ f .

2. f ∗ (g + h) = f ∗ g + f ∗ h.

3. f ∗ (cg) = c(f ∗ g).

Proof. These follow from some basic properties of definite integrals. See Exercise 5.1.

Now let en(x) = einx. The following suggests that convolutions will behave very nicely

with Fourier series.

Theorem 4.5. Let m,n ∈ Z. Then

em ∗ en =

en, if m = n

0, if m 6= n
(4.14)

Proof. By the definition of convolution and some basic properties of integration,

(em ∗ en)(x) =
1

2π

∫ π

−π
em(y)en(x− y) dy (4.15)

=
1

2π

∫ π

−π
eimyein(x−y) dy (4.16)

= einx
1

2π

∫ π

−π
eimye−iny dy (4.17)

Use (2.13) to finish the proof.

The following very important theorem says that the convolution of two functions can be

obtained by multiplying their Fourier coefficients together.

Theorem 4.6 (Convolution theorem for Fourier series). Suppose f ∼
∑
ane

inx and g ∼∑
bne

inx. Then f ∗ g ∼
∑
anbne

inx.

Fishy proof. (Note that this is very similar to the fishy proof of Theorem 4.2, except that

we use (4.14) instead of (2.18).)

Let f(x) =
∑∞

n=−∞ anen(x) and g(x) =
∑∞

m=−∞ bmem ( ). Then

f ∗ g =

(
∞∑

n=−∞

anen

)
∗

(
∞∑

m=−∞

bmem

)
(4.18)

=
∞∑

n=−∞

∞∑
m=−∞

anbm(en ∗ em) (4.19)

=
∞∑

n=−∞

anbnen (4.20)

17



where in the last line we used Theorem 4.5. Note that (4.19) involves interchanging an

infinite sum and an integral ( ). But whatever, the proof is done.

Real proof. Get ready for some double integrals. This is Exercise 5.4.

If we have a function f ∼
∑
ane

inx and we want to remove all frequencies |n| > N , we

can convolve f with DN(x), where

DN(x) =
N∑

n=−N

einx. (4.21)

Observe that from the convolution theorem,

(f ∗DN)(x) =
N∑

n=−N

ane
inx (4.22)

In signal processing, this is an example of a low-pass filter: We start with a function f which

has frequencies n ∈ Z. Then by convolving with DN , the resulting function f ∗ DN only

has “low” frequencies |n| ≤ N . DN is called the Dirichlet kernel. See Section 5.3 for some

exercises about it.

4.3 Application: The Basel problem (1 + 1
4 + 1

9 + · · · )

For some time, it was known that the series
∑∞

k=1
1
k2

= 1 + 1
4

+ 1
9

+ · · · converges. The Basel

problem, posed in the 1600s, asks for the value of this series, and in the 1700s, Euler showed

that the value is, surprisingly, π2

6
. Here we give a very short (but rigorous!) proof.

From Exercise 3.3, if f is the square wave (see (2.2)), then its Fourier coefficients are

an =

 2
inπ

if n is odd

0 if n is even
. (4.23)

Note that

1

2π

∫ π

−π
|f(x)|2 dx = 1 (4.24)

and

∞∑
n=−∞

|an|2 =
8

π2

∞∑
k=1

1

(2k + 1)2
. (4.25)

Thus, by Parseval’s theorem, we have

∞∑
k=1

1

(2k + 1)2
=
π2

8
(4.26)
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From this, it follows (see Exercise 5.10) that
∞∑
k=1

1

k2
=
π2

6
. (4.27)

(Every step here was rigorous.)

5 Day 2 exercises

5.1 Convolutions

Recall the definition of the convolution of two functions given in (??).

Exercise 5.1. ( ) Prove Theorem 4.4.

Exercise 5.2. ( ) Let f : R → C be a 2π-periodic function and with Fourier coefficients

(an). Let q(x) = eikx. Show that (f ∗ q)(x) = ake
ikx.

Exercise 5.3. ( ) Let f : R → C be any 2π-periodic function and let q : R → C be

any trigonometric polynomial. (Recall the definition of trigonometric polynomial in Defini-

tion 2.5.) Show that f ∗ q is a trigonometric polynomial.

Exercise 5.4. ( ) Prove the convolution theorem (Theorem 4.6) rigorously.

Hint: The nth Fourier coefficient of f ∗ g is by definition

1

2π

∫ π

−π
(f ∗ g)(x)e−inx dx =

1

2π

∫ π

−π

[
1

2π

∫ π

−π
f(y)g(x− y) dy

]
e−inx dx (5.1)

Your goal is to show this is equal to anbn, where an and bn are the nth Fourier coefficients

of f and g respectively. Try switching the order of integration and changing variables.

Exercise 5.5. ( ) This exercise is intended to help you gain some intuition about convo-

lutions.

Let f : R/2πZ→ C. For 0 < r < π, define a new function fr : R/2πZ→ C by

fr(x) =
1

2r

∫ x+r

x−r
f(t) dt (5.2)

In other words, the function fr(x) is defined as the average value of f on [x−r, x+r]. Here’s

the question: We can write fr = f ∗ gr for some function 2π-periodic gr : R → C. What is

gr?

Exercise 5.6. ( ) This is a continuation of Exercise 5.5. This problem requires some

analysis background.

1. Suppose f is continuous. Show that limr→0+ fr(x) converges pointwise to f(x).

2. Even better: Suppose f is continuous. Show that limr→0+ fr(x) converges uniformly

to f(x).
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5.2 Consequences of Parseval’s theorem

Exercise 5.7. ( ) Prove the Riemann-Lebesgue lemma: let f : R/2πZ→ C is any contin-

uous function. Let (an)∞n=−∞ be the Fourier coefficients. Then limn→∞ an = limn→−∞ an = 0.

(The statement is true if we replace “continuous” with “Riemann integrable,” but for that

you’d need to use Lebesgue’s criterion for Riemann integrability : https://en.wikipedia.

org/wiki/Riemann_integral#Integrability. In fact, the statement is true for Lebesgue

integrable functions as well, but for that you’d need to know about Lebesgue integration. In

any case, our goal here is not to try to prove this in the greatest generality.)

Exercise 5.8. ( ) Suppose f : R/2πZ → C is such that f ′ exists and is continuous. Let

(an)∞n=−∞ be the Fourier coefficients of f . What is an identity relating
∫ π
−π |f

′(x)|2 dx and

the numbers (an)∞n=−∞?

Exercise 5.9. ( ) Suppose f : R/2πZ→ C is such that f ′ exists and is continuous.

Let (an)∞n=−∞ be the Fourier coefficients of f . Prove that
∑
|an| converges, and hence the

Fourier series for f converges uniformly. This improves on Exercise 3.10.

Hint: The proof is very short (but not necessarily easy to find). You will need the

following version of the Cauchy-Schwarz inequality:(
∞∑

n=−∞

anbn

)2

≤

(
∞∑

n=−∞

|an|2
)(

∞∑
n=−∞

|bn|2
)

(5.3)

Exercise 5.10. ( ) Given that
∑∞

k=1
1

(2k+1)2
= π2

8
, show that

∑∞
k=1

1
k2

= π2

6
. Hint: Start

with
∑∞

k=1
1
k2

and rearrange the terms in the sum. (Rearranging terms is justified here! This

is because all the terms are nonnegative.)

Exercise 5.11. ( ) Show that
∑∞

k=1
1
k4

= π4

90
.

Exercise 5.12. ( ) Let m be a positive integer. Can you find a formula for
∑∞

k=1
1

k2m
?

5.3 The Dirichlet kernel

Recall the definition of Dirichlet kernel DN(x) given in (4.21).

Exercise 5.13. ( ) Show that

1

2π

∫ π

−π
DN(x) dx = 1 (5.4)

Exercise 5.14. ( ) Show that

DN(x) =
sin((N + 1

2
)x)

sin(x
2
)

(5.5)

Hint: Geometric series
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Exercise 5.15. ( ) Using (5.5), show that for any δ > 0,

lim
N→∞

FN(x) = 0 uniformly on {x : δ ≤ |x| ≤ π}. (5.6)

5.4 The Fejér kernel

The next few problems are about the Fejér kernel. For N ∈ Z≥0, define the Fejér kernel

FN : R/2πZ→ C by

FN(x) =
∑

|n|≤N−1

(
1− n

N

)
einx (5.7)

You don’t need to know about the Fejér kernel for this class, but it has some interesting

properties. It functions as a low-pass filter, like the Dirichlet kernel DN(x) in (4.21). In

some sense, the Fejér kernel is nicer because its Fourier coefficients decrease gradually to

zero, whereas the Dirichlet kernel has an abrupt jump. You can learn more here: https:

//en.wikipedia.org/wiki/Fej%C3%A9r_kernel

Exercise 5.16. ( ) Show that

1

2π

∫ π

−π
FN(x) dx = 1 (5.8)

Exercise 5.17. ( ) Show that

FN(x) =
1

N

sin2(Nx/2)

sin2(x/2)
(5.9)

Exercise 5.18. ( ) Using (5.9), show that for any δ > 0,

lim
N→∞

FN(x) = 0 uniformly on {x : δ ≤ |x| ≤ π}. (5.10)

Exercise 5.19. ( ) Let f : R→ C be a continuous 2π-periodic function. Use (5.8),

(5.9), and (5.10) to show that

f ∗ FN → f uniformly as N →∞. (5.11)

Using (5.11) and Exercise 5.3, conclude that “trigonometric polynomials are dense in the

space of continuous functions on R/2πZ.” That is,

∀ continuous f : R/2πZ→ C,∀ε > 0, ∃ a trig poly q(x) s.t. sup
x∈R
|f(x)− q(x)| ≤ ε. (5.12)

Friendly reminders:
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1. Recall the definition of “trigonometric polynomial” in Definition 2.5.

2. “Sup” stands for “supremum.” Look it up if you have not seen the definition before.

The statement “supx∈R |f(x)− q(x)| ≤ ε” is equivalent to “∀x ∈ R, |f(x)− q(x)| ≤ ε.”

The proof may be difficult if you have not seen this kind of argument before. The technique

is related to what you should use in Exercise 5.6. Talk to me for some hints! (Neeraja

covered this in her Week 2 class.)

Exercise 5.20. ( ) Fact: (5.11) is not true if we had the Dirichlet kernel DN(x) in place

of the Fejér kernel FN(x). This is one reason convergence of Fourier series is a difficult topic.

What goes wrong with the proof you gave in Exercise 5.19?

5.5 Consequences of denseness of trigonometric polynomials

The following two exercises rely heavily on Exercise 5.19, but if you’d like you can take that

exercise as given and see how it implies the results here.

Exercise 5.21. ( ) This exercise outlines a rigorous proof of both mean-square

convergence (2.19) and Parseval’s theorem (Theorem 4.2).

Recall the definition of the inner product 〈f, g〉 in (2.17), and define ‖g‖ =
√
〈g, g〉. If f

has Fourier coefficients (an)∞n=−∞, define SN(f)(x) =
∑N

n=−N ane
inx.

1. A trigonometric polynomial of the form q(x) =
∑N

n=−N bne
inx with bN 6= 0 or b−N 6= 0

is said to have degree N . Show that

‖f − SN(f)‖ ≤ ‖f − q‖ for all trigonometric polynomials q of degree ≤ N. (5.13)

2. Using the previous part and (5.12), deduce that

lim
N→∞

‖f − SN(f)‖ = 0. (5.14)

This completes the proof of mean-square convergence (2.19).

3. Show the following analogue of the Pythagorean theorem:

‖SN‖2 + ‖f − SN(f)‖2 = ‖f‖2 for all N. (5.15)

4. From the previous parts, deduce Parseval’s theorem (Theorem 4.2).

Hint: It helps to think in terms of linear algebra. Think of SN(f) as the orthogonal projection

of f onto the vector space spanned by the functions {einx : |n| ≤ N}.
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Exercise 5.22. ( ) Prove the Weierstrass approximation theorem:

∀ continuous f : [−1, 1]→ C,∀ε > 0,∃ a polynomial p(x) s.t. sup
x∈[−1,1]

|f(x)− p(x)| ≤ ε.

(5.16)

Here, p(x) is a regular polynomial, not a trigonometric polynomial! Here are some hints:

1. Extend f to be a 2π-periodic function.

2. Show that trigonometric polynomials can be well approximated by polynomials on

[−1, 1].

3. Use (5.12).

Neeraja proved the Weierstrass approximation theorem in her Week 2 class by a different

method. She used Bernstein polynomials.

6 Day 3

6.1 Application: Heat equation on the circle

First, let’s introduce the heat equation on the line. Suppose we have an infinite metal rod,

which we can think of as R.

Let u(x, t) be the temperature of the rod at point x at time t. The heat equation (which

can be derived using physics) is a partial differential equation which says that

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t). (6.1)

To see how solutions of the heat equation behave, check out http://math.uchicago.

edu/~luis/pde/heat.html. (This app actually demonstrates the heat equation for a finite

metal rod held at a constant temperature at both ends. See Exercise 7.2 for more.)

However, we’ve been working with periodic functions, so let’s restrict ourselves to looking

at functions u(x, t) which are 2π-periodic in x. That is, u(x + 2π, t) = u(x, t). To give a

physical interpretation of periodic solutions, suppose we have a circular metal rod of radius

1, which we can think of as {(cosx, sinx) : x ∈ [−π, π)}. Suppose the initial temperature

is u(x, 0) = f(x) for some function f : [−π, π) → C, which we are given. We’d like to

determine the temperature at future times. We can use Fourier series to do this.

Theorem 6.1 (Solution to heat equation). Let f is a 2π-periodic function with Fourier

series
∑

n ane
inx. Suppose u(x, t) satisfies the heat equation (6.1) and the initial condition
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u(x, 0) = f(x). Then (under some mild smoothness conditions on f),

u(x, t) =
∞∑

n=−∞

ane
−n2teinx (6.2)

Proof. ( ) For each fixed t, we can think of u(x, t) as a function in x, so we can expand it

as a Fourier series in x:

u(x, t) =
∞∑

n=−∞

cn(t)einx where cn(t) =
1

2π

∫ π

−π
u(x, t)e−inx dx. (6.3)

By differentiating with respect to x and t (illegally, since there is an infinite sum), we get

∂u

∂t
(x, t) =

∞∑
n=−∞

c′n(t)einx (6.4)

∂2u

∂x2
(x, t) =

∞∑
n=−∞

(−n2)cn(t)einx (6.5)

Then by (6.1), and equating coefficients, we get

c′n(t) = −n2cn(t). (6.6)

This is an ordinary differential equation! No more partial derivative nonsense. For each n,

we can solve for cn(t) in this differential equation to get

cn(t) = e−n
2tcn(0). (6.7)

By the initial condition u(x, 0) = f(x), we get cn(0) = an. Thus,

cn(t) = e−n
2tan (6.8)

which completes the proof.

Interpretation: If you split u(x, t) up into different frequencies, the coefficient e−n
2t tells

you how quickly the nth frequency decays as the time t increases. In particular, the higher

n is, the more quickly the frequency decays. This makes sense, temperature will “smooth

out” over time and high frequencies are not smooth.

Fun fact 6.2. Define

Ht(x) =
∞∑

n=−∞

e−n
2teinx. (6.9)
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Then by the convolution theorem (Theorem 4.6), (6.2) could also be written

u(x, t) = (Ht ∗ f)(x). (6.10)

The function Ht(x) is called the heat kernel (on the circle).

Define a rescaled version of the heat kernel as follows.

Θ(z, τ) = H−πiτ (2πz) =
∞∑

n=−∞

eπin
2τe2πinz. (6.11)

This function is called the Jacobi theta function. This function has many important appli-

cations in number theory, for example, in proving the functional equation for the Riemann

zeta function (allowing you to extend ζ(s) =
∑∞

n=1
1
ns to all of the complex plane) and in

proving the Jacobi four squares theorem (which gives you the exact number of ways any

integer can be written as the sum of four squares).

Fun fact 6.3. The heat equation generalizes easily to d-dimensions. (For practical appli-

cations, perhaps d = 3 is the most important.) Let ~x ∈ Rd. Then the d-dimensional heat

equation is:

∂u

∂t
(~x, t) =

d∑
i=1

∂2u

∂x2i
(~x, t). (6.12)

6.2 Application: The isoperimetric inequality

If a circle in R2 has area A and perimeter P , then A = 1
4π
P 2. The isoperimetric inequality

states the following:

Theorem 6.4 (Isoperimetric inequality). For any shape in R2,

area ≤ 1

4π
(perimeter)2 with equality iff the shape is a circle. (6.13)

First we set up some background. A parametrized curve is a continuous function γ :

[a, b]→ R2. A curve Γ ⊂ R2 is the image of a parametrized curve. A simple closed curve is

a curve such that γ(a) = γ(b) and γ restricted to [a, b) is injective. That is, a simple closed

curve is a curve which does not intersect itself and starts and ends at the same point.

Suppose γ(t) = (x(t), y(t)). We can think of γ′(t) = (x′(t), y′(t)) as the velocity vector of

the curve. Then
√
|x′(t)|2 + |y′(t)|2 is the speed at time t. As a result,

length of γ =

∫ b

a

√
|x′(t)|2 + |y′(t)|2 dt (6.14)
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Given any curve, we can parametrize it by arclength, which means we move along the curve

at unit speed: |x′(t)|2 + |y′(t)|2 = 1 for all t ∈ [a, b]. In this case, the length of the curve is

just b− a.

By Green’s theorem (which is a special case of Stokes’s theorem), if γ is a simple closed

curve,

area enclosed by γ =

∣∣∣∣∫ b

a

x(t)y′(t) dt

∣∣∣∣ (6.15)

We’ll just take this as a fact. You are asked to verify this in Exercise 7.3.

Now that we have formulas for the length and area, we are ready to prove Theorem 6.4.

Proof of Theorem 6.4. Since we can rescale, we may assume without loss of generality that

the length of γ is 2π. We may also assume that γ is the arclength parametrization. So

γ : [0, 2π]→ R2, with |x′(t)|2 + |y′(t)|2 = 1 for all t. So (6.13) now becomes∣∣∣∣∫ 2π

0

x(t)y′(t) dt

∣∣∣∣ ≤ π with equality iff γ is a unit circle. (6.16)

Let’s show (6.16) now. Let x(t) ∼
∑
ane

int and y(t) ∼
∑
bne

int. Then y′(t) ∼
∑
inbne

int,

so by Parseval’s identity (Theorem 4.3),

1

2π

∫ 2π

0

x(t)y′(t) dt =
∞∑

n=−∞

an(inbn) (6.17)

so by the triangle inequality,

1

2π

∣∣∣∣∫ 2π

0

x(t)y′(t) dt

∣∣∣∣ ≤ ∞∑
n=−∞

|n||an||bn| (6.18)

To motivate what happens next, our goal is to try to get to an expression involving

|x′(t)|2 + |y′(t)|2. And recall that x′(t) ∼
∑
inane

int and y′(t) ∼
∑
inbne

int. So we should

separate the |an| and |bn| above. We can do this with the arithmetic mean–geometric mean

inequality (or Cauchy-Schwarz): |an||bn| ≤ |an|2+|bn|2
2

. So we have

RHS of (6.18) ≤ 1

2

∞∑
n=−∞

|n|(|an|2 + |bn|2) (6.19)

Next, we use |n| ≤ n2 so that we can apply Parseval again:

RHS of (6.19) ≤ 1

2

∞∑
n=−∞

|n|2(|an|2 + |bn|2) =
1

2

∞∑
n=−∞

(|nan|2 + |nbn|2) (6.20)

=
1

4π

∫ 2π

0

(|x′(t)|2 + |y′(t)|2) dt (6.21)

=
1

2
(6.22)
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where in the last line we used the fact that γ is parametrization by arclength. This chain of

inequalities implies the inequality in (6.16). It remains to show that equality holds iff γ is a

circle. That will be Exercise 7.4.

Fun fact 6.5. If you type “Eevee curve” on Wolfram Alpha (direct link: https://www.

wolframalpha.com/input/?i=eevee+curve), you get the following

together with the parametric equations

� x(t) = ((−8
7

sin(20
13
−27t)− 9

14
sin(29

19
−25t)− 2

9
sin(26

17
−16t)− 13

6
sin(14

9
−15t)− 39

10
sin(14

9
−

11t)− 41
9

sin(11
7
−10t)− 19

13
sin(11

7
−6t)− 9

17
sin(3

2
−5t)− 135

67
sin(14

9
−4t)− 5

3
sin(14

9
−2t)+

1018
11

sin(t+ 11
7

)+ 47
7

sin(3t+ 11
7

)+ 9
8

sin(7t+ 8
5
)+ 1

8
sin(8t+ 32

7
)+2 sin(9t+ 8

5
)+ 2

3
sin(12t+ 51

11
)+

52
17

sin(13t+ 8
5
)+ 2

11
sin(14t+ 9

5
)+ 9

11
sin(17t+ 19

12
)+2 sin(18t+ 19

12
)+[50+ lines removed]

� y(t) = ((−11
8

sin(14
9
−27t)− 30

7
sin(14

9
−25t)− 5

2
sin(14

9
−23t)− 54

13
sin(11

7
−21t)− 147

26
sin(11

7
−

19t)− 41
7

sin(17
11
−17t)− 30

7
sin(35

23
−14t)− 94

9
sin(17

11
−11t)− 65

12
sin(14

9
−10t)− 14

11
sin(41

27
−

9t)− 5
11

sin(3
2
− 5t) + 644

13
sin(t+ 11

7
) + 543

17
sin(2t+ 11

7
) + 2

11
sin(3t+ 6

5
) + 35

8
sin(4t+ 11

7
) +

13
9

sin(6t+ 14
9

)+ 3
10

sin(7t+ 55
12

)+ 496
55

sin(8t+ 19
12

)+ 51
10

sin(12t+ 11
7

)+[50+ lines removed]

(I did not include the full equations because they would take up 2 full pages here.)

How is Wolfram Alpha generating these equations? It starts with a parametrization of the

curve γ : [0, 60π]→ R2. Let x(t) and y(t) be the coordinate functions of γ(t). Then Wolfram

Alpha chops up [0, 60π] into intervals of length 2π, and in each interval, it expands x(t) and

y(t) as Fourier series. (That’s what we did in our proof of the isoperimetric inequality!)

Instead of writing the Fourier series with complex exponentials, they use sines with shifted

phases. These are equivalent because anything of the form aeint + be−int can be rewritten in

the form c sin(nt+ d).
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7 Day 3 exercises

7.1 Partial differential equations

Exercise 7.1. ( ) This problem is about the wave equation on the circle. The wave

equation is

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t) (7.1)

Here is what wave equation (7.1) models: Imagine you have a Slinky (or a rope) which you

can make oscillate up and down. Then u(x, t) is the vertical displacement of the Slinky at

position x at time t.

Now, let u(x, t) be a 2π-periodic function in x, i.e., u satisfies u(x + 2π, t) = u(x, t).

Suppose u(x, t) satisfies the wave equation (7.1) with the initial conditions

u(x, 0) = f(x) ∼
∑

ane
inx (7.2)

∂u

∂t
(x, 0) = g(x) ∼

∑
bne

inx (7.3)

Express the solution u(x, t) as a Fourier series. (Feel free to do illegal operations as we did

in Theorem 6.1.) Can you find a physical/geometric description of the solution? Maybe you

can say something about “traveling waves.”

Because this problem deals with functions that are periodic in x, you can think of it as

a giant Slinky wrapped around the equator. If we think of the equator as {(cosx, sinx) :

x ∈ R/2πZ}, then u(x, t) represents the displacement from equilibrium of the Slinky at

(cosx, sinx) at time t.

Exercise 7.2. ( ) This problem is about the heat equation. Consider a finite metal rod

held at a constant temperature at both ends. We can think of the rod as the line segment

[0, π].

Let f : [0, π] → C be a function with f(0) = f(π) = 0. Let u(x, t) be a function,

where x ∈ [0, π] and t ≥ 0. Suppose u(x, t) satisfies the heat equation (6.1) with the initial

condition

u(x, 0) = f(x) for all x ∈ [0, π] (7.4)

and the boundary condition

u(0, t) = u(π, t) = 0 for all t ≥ 0. (7.5)

(The boundary condition says that the rod is held at the constant temperature 0 at both

ends.)

Solve for u(x, t) in the following way: Extend f to be an odd function on [−π, π], and

then use our solution to Theorem 6.1. Why doesn’t this work if we extend f to be an even

function?
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7.2 Isoperimetric inequality

Exercise 7.3. ( ) (This problem requires multivariable calculus background.) Prove the

formula (6.15) we gave for the area enclosed by a curve γ.

Exercise 7.4. ( ) Complete the proof of the isoperimetric inequality (Theorem 6.4).

That is, show that if area ≤ 1
4π

(perimeter)2, then the shape is a circle. To do this, go back

through the proof, and determine what happens if equality holds in every place that we

wrote down an inequality sign.

7.3 Looking ahead: the Fourier transform

These exercises are to help you gain a little familiarity with the Fourier transform before we

introduce it tomorrow.

We no longer consider periodic functions. For a function f : R → C, define its Fourier

transform by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx. (7.6)

(The symbole ξ is the Greek letter xi. Most mathematicians I know pronounce it like “ksee.”)

Also, define the convolution of two functions f : R→ C and g : R→ C by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y) dy (7.7)

(This is the convolution that Roy encountered in his LATEX typing game.) The integrals

above are improper integrals (since they go from −∞ to ∞), but for these exercises, you

don’t have to worry about that.

Exercise 7.5. ( ) Let

f(x) = 1[− 1
2
, 1
2
](x) =

1 if |x| ≤ 1
2

0 otherwise
and g(x) =

1− |x| if |x| ≤ 1

0 otherwise
. (7.8)

Calculate f̂(ξ) and ĝ(ξ). You should get

f̂(ξ) =
sinπξ

πξ
and ĝ(ξ) =

(
sin πξ

πξ

)2

. (7.9)

(Remember that you can use Wolfram Alpha to calculate integrals for you!)

Exercise 7.6. ( ) Let f and g be as in Exercise 7.5. Compute the convolution f ∗ f and

check that it is equal to g. (See (7.7) for the definition of convolution.)
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Do you have a guess for what should be true about the Fourier transform of the convo-

lution of two functions? That is, what should be the relationship between û(ξ), v̂(ξ), and

û ∗ v(ξ)?

Exercise 7.7. ( ) Let f : R → C. Let M > 0 and set g(x) = f(Mx). Show that

ĝ(ξ) = 1
M
f̂( ξ

M
).

Hint: This should be very similar to the real proof of Theorem 2.11. By the definition of

ĝ(ξ), we have

ĝ(ξ) =

∫ ∞
−∞

g(x)e−2πixξ dx =

∫ ∞
−∞

f(Mx)e−2πixξ dx. (7.10)

Now do a change of variables.

Exercise 7.8. ( ) Show that

1̂[−r,r](ξ) =
sin 2πrξ

πξ
, where 1[−r,r](x) =

1 if |x| ≤ r

0 otherwise
(7.11)

You can do this two different ways.

1. By the definition of the Fourier transform (8.4).

2. By Exercise 7.5 and Exercise 7.7.

8 Day 4

8.1 Fourier transform

Note: Neeraja’s Week 4 class on the Heisenberg uncertainty principle will cover the Fourier

transform in more detail and rigor than I do here.

Now we turn to functions f : R → C that are not periodic. We define the Fourier

transform f̂ : R→ C of f by f̂(ξ) =
∫∞
−∞ f(x)e−2πixξ dx.

Where does this definition come from? It turns it has some very nice properties similar

to those of Fourier series. Here are some things we saw for Fourier series. Suppose f is a

(nice) 1-periodic function. Then

1. Definition of Fourier coefficients:

an =

∫ 1

0

f(x)e−2πinx dx. (8.1)
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2. A reconstruction formula for f

f(x) =
∞∑

n=−∞

ane
2πinx (8.2)

3. Parseval’s identity ∫ 1

0

|f(x)|2 dx =
∞∑

n=−∞

|an|2 (8.3)

When f : R→ C is not periodic (but still nice), we have the following.

1. Definition of Fourier transform f̂ : R→ C:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx. (8.4)

2. The Fourier inversion formula

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξ dξ. (8.5)

3. Plancherel’s theorem ∫ ∞
−∞
|f(x)|2 dx =

∫ ∞
−∞
|f̂(ξ)|2 dξ (8.6)

A few more things:

There’s a version of Plancherel’s theorem for two functions, which is the analogue of

Theorem 4.3: ∫ ∞
−∞

f(x)g(x) dx =

∫ ∞
−∞

f̂(ξ)ĝ(ξ) dx (8.7)

Fun fact 8.1. There’s an analogue of the orthogonality of {einx : n ∈ Z} (2.13), which is

the following: ∫ ∞
−∞

e2πiαxe−2πiβx dx “=”

∞ if α = β

0 if α 6= β
(8.8)

Maybe this seems like nonsense. When α 6= β, the integral oscillates forever and doesn’t

converge, just like how
∫∞
−∞ sinx dx doesn’t converge.

But there are ways to interpret these integrals so that they do have a value of zero.

To do this rigorously requires the mathematical theory of distributions. The Dirac delta

function δ(x), also called the unit impulse function in signal processing, is an example of a

distribution. The RHS of (8.8) is actually δ(α − β). (When Elias Stein taught my Fourier

analysis class, he once referred to δ(x) as the “mythical delta function.”) See Exercise 9.5

for some calculations involving the delta function.

See https://en.wikipedia.org/wiki/Distribution_(mathematics).
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8.2 Improper integrals and convergence issues

With the Fourier transform, we actually need to be even more careful than with Fourier

series. Now we are integrating functions on the entire real line instead of the bounded

interval [−π, π], so we have to deal with improper integrals. In order for integrals like∫∞
−∞ f(x) dx to converge, f needs to decay when x is large.

To avoid these kinds of convergence issues. We’ll define S(R) to be, roughtly speaking,

the set of functions f : R → C which are infinitely differentiable and such that all of the

derivatives of f decay very rapidly. Whenever I write “f ∈ S(R),” it’s enough to think “f

is a very nice function and I don’t have to worry about convergence issues.” The actual

definition of S(R) is given in (8.9).

Fun fact 8.2. Define the following two spaces of functions f : R→ C:

S(R) =

{
f

∣∣∣∣ ∀m,n ∈ Z≥0, ∃Cm,n s.t. ∀x ∈ R, |f (m)(x)| ≤ Cm,n
|x|n

}
. (8.9)

An element of S is called a Schwartz function. The definition above says that a function

f : R → C is a Schwartz function if it is infinitely differentiable and if all of its derivatives

decay faster than every polynomial.

It may seem weird to focus on S(R). But the Fourier transform of a Schwartz function

is again a Schwartz function, so S(R) is actually a very nice setting to study the Fourier

transform. Furthermore, when we prove properties of the Fourier transform for Schwartz

functions, we can often use “approximation arguments” to deduce these properties for certain

other kinds of functions as well. This is a common technique in analysis.

8.3 Basic properties of the Fourier transform

The following is the analogue of Theorem 2.10. (We didn’t cover this theorem in class.)

Theorem 8.3. Let f ∈ S(R). Then the Fourier transfrom of f ′ is (̂f ′)(ξ) = 2πiξf̂(ξ).

Proof. By the Fourier inversion formula,

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξ dξ. (8.10)

Now differentiate both sides. For the RHS, pass the derivative through the integral. (Since

f ∈ S(R), this is perfectly justified.)

f ′(x) =

∫ ∞
−∞

f̂(ξ)
d

dx
e2πixξ dξ =

∫ ∞
−∞

(2πiξ)f̂(ξ)e2πixξ dξ. (8.11)

Thus, we see that (̂f ′)(ξ) = 2πiξf̂(ξ).
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The following is the analogue of Theorem 2.11.

Theorem 8.4. Let M > 0 and set g(x) = f(Mx). Then ĝ(ξ) = 1
M
f̂( ξ

M
).

Proof. This was Exercise 7.7.

8.4 Convolutions

Define the convolution of two functions by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y) dy. (8.12)

(Warning: We use the same symbol for convolution here as in the periodic function case,

even though the definition is different in the two questions.)

There was a convolution theorem for Fourier series (Theorem 4.6). The following is the

analogue for the Fourier transform.

Theorem 8.5 (Convolution theorem for the Fourier transform). Let f, g ∈ S(R). Then

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Proof. The real proof of this is very similar to the real proof of Theorem 4.6. We skip it.

8.5 Application: The Borwein integrals

8.5.1 The setup

This purpose of this section is to see some examples of Fourier transforms and convolutions.

The goal is to understand some very curious integrals. To clean up notation, let’s define the

following function

sincx =
sinx

x
. (8.13)

(The name of this function is pronounced like “sink.” Also, sinc 0 = 1.) Now observe the

following, called the Borwein integrals. ∫ ∞
−∞

sincπt dt = 1 (8.14)∫ ∞
−∞

sinc(πt) sinc(πt
3

) dt = 1 (8.15)∫ ∞
−∞

sinc(πt) sinc(πt
3

) sinc(πt
5

) dt = 1 (8.16)

... (8.17)∫ ∞
−∞

sinc(πt) sinc(πt
3

) sinc(πt
5

) · · · sinc(πt
13

) dt = 1 (8.18)
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So far so good, but then∫ ∞
−∞

sinc(πt) sinc(πt
3

) · · · sinc(πt
15

) dt =
935615849426881477393075728938

935615849440640907310521750000
(8.19)

≈ 1− 1.5 · 10−11 (8.20)

Our goal in this section is to understand why this happens.

8.5.2 Fourier transform and the sinc function

First, let’s understand a little more about the sinc function. As stated in Exercise 7.5 we

have

1̂[− 1
2
, 1
2
](ξ) = sinc(πξ). (8.21)

(See the exercise for the definition of 1[− 1
2
, 1
2
].) Now let’s define some rescaled versions of

1[− 1
2
, 1
2
]. For m > 0, let

fm(x) = m1[− 1
2m

, 1
2m

](x) = m1[− 1
2
, 1
2
](mx). (8.22)

By Exercise 7.8, these functions satisfy

f̂m(ξ) = sinc(πξ
m

) (8.23)

Now the Borwein integrals above can be rewritten∫ ∞
−∞

f̂1(ξ) dξ = 1 (8.24)∫ ∞
−∞

f̂1(ξ) f̂3(ξ) dξ = 1 (8.25)∫ ∞
−∞

f̂1(ξ) f̂3(ξ) f̂5(ξ) dξ = 1 (8.26)

... (8.27)∫ ∞
−∞

f̂1(ξ) f̂3(ξ) f̂5(ξ) · · · f̂13(ξ) dξ = 1 (8.28)∫ ∞
−∞

f̂1(ξ) f̂3(ξ) f̂5(ξ) · · · f̂13(ξ) f̂15(ξ) dξ < 1 (8.29)

Let’s deal with the first one (8.24). By the Fourier inversion formula,∫ ∞
−∞

f̂1(ξ)e
2πixξ dξ = f1(x). (8.30)

Setting x = 0 gives which gives us (8.24).
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Now let’s move on to the second equation (8.25). For this one, we can use Plancherel’s

theorem for two functions (8.7) to get∫ ∞
−∞

f̂1(ξ) f̂3(ξ) dx =

∫ ∞
−∞

f1(x) f3(x) dx (8.31)

From the definitions of f1 and f3 (8.22), we have∫ ∞
−∞

f1(x) f3(x) dx =

∫ 1/2

−1/2
f3(x) dx = 1, (8.32)

which gives us (8.25).

Now we turn to the third equation (8.26). Unfortunately, there is no Plancherel for

three functions. However, we can use the convolution theorem (Theorem 8.5), followed by

Plancherel, followed by the definition of f1, to get∫ ∞
−∞

f̂1(ξ) f̂3(ξ) f̂5(ξ) dξ =

∫ ∞
−∞

f̂1(ξ) f̂3 ∗ f5(ξ) dξ (8.33)

=

∫ ∞
−∞

f1(x) (f3 ∗ f5)(x) dx (8.34)

=

∫ 1/2

−1/2
(f3 ∗ f5)(x) dx (8.35)

Note that this argument generalizes. For k ≥ 1, then by repeatedly applying the convo-

lution theorem,

f3 ∗ f5 ∗ · · · ∗ f2k+1̂(ξ) = f̂3(ξ) f̂5(ξ) · · · f̂2k+1(ξ), (8.36)

so the previous argument gives∫ ∞
−∞

f̂1(ξ) f̂3(ξ) f̂5(ξ) · · · f̂2k+1(ξ) dξ =

∫ 1/2

−1/2
(f3 ∗ f5 ∗ · · · ∗ f2k+1)(x) dx. (8.37)

Now we just need to understand the RHS of (8.37) better.

8.5.3 More on convolutions

Theorem 8.6. Let f and g be functions R→ C. Then∫ ∞
−∞

(f ∗ g)(x) =

(∫ ∞
−∞

f(x) dx

)(∫ ∞
−∞

g(x) dx

)
(8.38)

Proof. A natural way to do this is insert the definition of f ∗ g into the LHS of (8.38) and

then interchange the order of integration.
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But for fun, let’s prove with the convolution theorem. By inserting ξ = 0 into the

definition of the Fourier transform we have

f̂(0) =

∫ ∞
−∞

f(x) dx (8.39)

ĝ(0) =

∫ ∞
−∞

g(x) dx (8.40)

f̂ ∗ g(0) =

∫ ∞
−∞

(f ∗ g)(x) dx (8.41)

Then (8.38) follows from the convolution theorem.

Theorem 8.7. Let f and g are two nonnegative functions. Suppose

f(x) > 0 for all |x| < a (8.42)

f(x) = 0 for all |x| > a (8.43)

g(x) > 0 for all |x| < b (8.44)

g(x) = 0 for all |x| > b (8.45)

Then

(f ∗ g)(x) > 0 for all |x| < a+ b (8.46)

(f ∗ g)(x) = 0 for all |x| ≥ a+ b (8.47)

See Exercise 9.8 for a generalization of Theorem 8.7 as well as some connections to

additive combinatorics.

Proof. Let’s first prove (8.46). By definition of the convolution, (f ∗ g)(x) =
∫∞
−∞ f(y)g(x−

y) dy. By (8.42) and (8.44), the integrand f(y)g(x− y) is positive if |y| < a and |x− y| < b,

that is, if y belongs to the following intersection:

(−a, a) ∩ (x− b, x+ b). (8.48)

If |x| < a+ b, the intersection is some nondegenerate interval (c, d) (draw a picture!), so

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y) dy ≥
∫ d

c

f(y)g(x− y) dy > 0, (8.49)

which completes the proof of (8.46).

To prove (8.47), we will use (8.43) and (8.45). I’ll leave the details as an exercise.
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8.5.4 Back to Borwein integrals

For k ≥ 1, we showed∫ ∞
−∞

sinc(πt) sinc(πt
3

) sinc(πt
5

) · · · sinc(πt
13

) dt =

∫ 1/2

−1/2
(f3 ∗ f5 ∗ · · · ∗ f2k+1)(x) dx (8.50)

where

f3(x) = 3 · 1[− 1
6
, 1
6
](x) (8.51)

f5(x) = 5 · 1[− 1
10
, 1
10

](x) (8.52)

f7(x) = 7 · 1[− 1
14
, 1
14

](x) (8.53)

and so on.

Note that
∫∞
−∞ fm(x) dx = 1 for all m. By applying Theorem 8.6 repeatedly, we get∫ ∞

−∞
(f3 ∗ f5 ∗ · · · ∗ f2k+1)(x) dx = 1. (8.54)

By applying Theorem 8.7 repeatedly, we get that

(f3 ∗ f5 ∗ · · · ∗ f2k+1)(x)

> 0 if |x| < 1
2

(
1
3

+ 1
5

+ · · ·+ 1
2k+1

)
= 0 if |x| > 1

2

(
1
3

+ 1
5

+ · · ·+ 1
2k+1

) . (8.55)

By combining (8.54) and (8.55), we see that the RHS of (8.50) is= 1 if 1
3

+ 1
5

+ · · ·+ 1
2k+1

≤ 1

< 1 if 1
3

+ 1
5

+ · · ·+ 1
2k+1

> 1
. (8.56)

8.6 Application: Heat equation on the line

(We didn’t cover this section in class.)

Suppose we have a straight metal rod of infinite length. We can think of points on this rod

as elements of R. Suppose the initial temperature is at position x is f(x) for some function

f : R → C. We’d like to determine the temperature at future times. (See Section 6.1 for

more background information about the heat equation.)

Theorem 8.8 (Solution to heat equation). Suppose u(x, t) satisfies the heat equation ∂u
∂t

(x, t) =
∂2u
∂x2

(x, t) and the initial condition u(x, 0) = f(x). Then (under some mild smoothness con-

ditions on f),

u(x, t) =

∫ ∞
−∞

f̂(ξ)e−4π
2ξ2te2πixξ dξ (8.57)
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Proof. You are asked to do this in Exercise 9.9.

Fun fact 8.9. Define

Ht(x) =

∫ ∞
−∞

e−4π
2ξ2te2πixξ dξ. (8.58)

Then by the convolution theorem (Theorem 8.5), (8.57) could also be written

u(x, t) = (Ht ∗ f)(x). (8.59)

The function Ht(x) is called the heat kernel (on the line). It is true that

Ht(x) =
1

(4πt)1/2
e−x

2/4t. (8.60)

This follows from the fact that the Fourier transform of the Gaussian e−πx
2

is itself e−πξ
2
.

See Stein and Shakarchi for the proof.

9 Day 4 exercises

Exercise 9.1. ( ) Fix ξ0 ∈ R and let f(x) = 1[−r,r](x)e2πixξ0 . Show that

f̂(ξ) =
sin 2πr(ξ − ξ0)
π(ξ − ξ0)

. (9.1)

Exercise 9.2. ( ) Let f ∈ S(R), and let g = f̂ . Show that ĝ(x) = f(−x). (In other words,

if you take the Fourier transform of f(x) twice, you get back f(−x).)

Exercise 9.3. ( ) Let f(x) = sinπξ
πξ

. Show that f̂(ξ) = 1[− 1
2
, 1
2
](ξ). (Hint: Don’t calculate

f̂(ξ) directly using the definition of the Fourier transform. That’s hard!)

Exercise 9.4. ( ) Show that
∫∞
−∞

(
sin(πx)
πx

)2
dx = 1 and

∫∞
−∞

(
sinx
x

)2
dx = π.

Exercise 9.5. ( ) The Dirac delta function δ(x) is defined to be a “function” which

satisfies the following ”mythical” property:∫ ∞
−∞

δ(x)f(x) dx = f(0) for all continuous functions f : R→ C. (9.2)

Here are some basic calculations you can do with the delta function.

1. Calculate the Fourier transform δ̂(ξ).

2. Let δx0(x) = δ(x− x0). Calculate the Fourier transform δ̂x0(ξ). (Hint: do a change of

variables.)
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3. Show that the Fourier transform of f(x) = e2πiξ0x is f̂(ξ) = δx0(ξ).

4. Let f be a continuous function. Show that δ ∗ f = f .

These properties of δ are very important in signal processing.

Don’t worry about the details. These calculations are completely rigorous in the frame-

work of distributions. See Fun fact 8.1 for some more details.

Exercise 9.6. ( ) Verify (8.47) of Theorem 8.7.

Exercise 9.7. ( ) Let b1, b2, · · · , bN be a finite sequence of positive numbers with b1 =

max(b1, b2, . . . , bN). Show that

∫ ∞
−∞

sinc(b1t) · · · sinc(bN t) dt

= π
b1

if 1
b2

+ 1
b3

+ · · ·+ 1
bN
≤ 1

b1

< π
b1

if 1
b2

+ 1
b3

+ · · ·+ 1
bN
> 1

b1

. (9.3)

Exercise 9.8. ( ) Here we prove a generalization of Theorem 8.7. First, if A,B ⊂ R,

we define the Minkowski sum by

A+B = {a+ b : a ∈ A, b ∈ B}. (9.4)

Let A and B be two open sets in R. Let f and g are two nonnegative functions. Suppose

f(x) > 0 for all x ∈ A (9.5)

f(x) = 0 for all x 6∈ A (9.6)

g(x) > 0 for all x ∈ B (9.7)

g(x) = 0 for all x 6∈ B (9.8)

1. Show that (f ∗ g)(x) > 0 for all x ∈ A+B.

2. Show that (f ∗ g)(x) = 0 for all x 6∈ A+B.

Fun fact: The Minkowski sum appeared in Milan’s week 2 class on the Plünnecke-Ruzsa

inequality, and is a key concept in the field of additive combinatorics. It turns out that

Fourier analytic methods are very useful in this field.

Exercise 9.9. ( ) Give a fishy ( ) proof of Theorem 8.8. Hint: Take a look at the

proof of Theorem 6.1 and replace (6.3) with the following:

u(x, t) =

∫ ∞
−∞

û(ξ, t)e2πixξ dξ where û(ξ, t) =

∫ ∞
−∞

u(x, t)e−2πixξ dx. (9.9)

Now you should be able to imitate the proof of Theorem 6.1 very closely.
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10 Day 5

10.1 Time-frequency analysis

The following is all a very informal discussion.

Let’s say you have a signal f(t), where t represents time. And suppose that we want to

find a function φ(t, ξ) which measures the amplitude/strength of frequency ξ at time t in the

signal.

One way to visualize φ(t, ξ) is as a heat map of the phase space {(t, ξ) : t ∈ R, ξ ∈ R}.
We can darken points (t, ξ) of the plane, if frequency ξ is strong at time t. We just invented

the musical score! As well as the spectrogram! (Speaking of spectrograms, Audacity has a

feature that let’s you view your sound file as a spectrogram.)

Suppose we wanted φ(0, ξ). Here’s how we could do this. We could “localize in time” by

considering the product 1[− 1
2
, 1
2
](t)f(t). Then we can compute the Fourier transform of this

product:

1[− 1
2
, 1
2
]f̂(ξ) =

∫ ∞
−∞

1[− 1
2
, 1
2
](t)f(t)e−2πitξ dt. =

∫ 1/2

−1/2
f(t)e−2πitξ dt. (10.1)

(What we’re describing here is called the short-time Fourier transform. See https://en.

wikipedia.org/wiki/Short-time_Fourier_transform.)

However, one issue with this approach is that it’s very hard to tell apart frequencies that

are close. For example, suppose you have a signal f(t) and you look at just t ∈ [−1
2
, 1
2
], and

that you see something that is approximately a horizontal line. Is this a signal of frequency

0? Or maybe a signal of frequency 0.001? If the frequency were 0.001, we would need a

much bigger time interval than [−1
2
, 1
2
] to be able to differentiate it from frequency 0. For

example, it would take an interval like [−500, 500] to be able to see an entire period of the

signal of frequency 0.001.

Similarly, to differentiate between a frequency of ξ0 and a frequency of ξ0 + 0.001, we

would need an interval like [−500, 500] or bigger.

The following example illustrates the ideas above with some calculations.

Example 10.1. Consider f(t) = c0e
2πitξ0 which is a signal purely of frequency ξ0, with

amplitude c0. Then (10.1) becomes

1[− 1
2
, 1
2
]f̂(ξ0) =

∫ 1/2

−1/2
c0e

2πitξ0e−2πitξ0 dt. =

∫ 1/2

−1/2
c0 dt = c0 (10.2)

as expected. If ξ 6= ξ0, then we should expect that there is no strength of frequency ξ at

time 0. However, the calculations (Exercise 9.1) tell us that

1[− 1
2
, 1
2
]f̂(ξ0) = c0 sinc(π(ξ − ξ0)), (10.3)
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which is not zero! Recall that sincx = sinx
x

, so lim|x|→∞ sincx = 0. This implies that when

|ξ − ξ0| is very large, the the RHS of (10.3) is very small, which is good. But when |ξ − ξ0|,
then the RHS is close to c0. This is because we cannot tell close frequencies apart.

Now suppose that we “localize” to a different time interval [− r
2
, r
2
]. Observe that

1

r
1[− r

2
, r
2
]f̂(ξ0) =

1

r

∫ r/2

−r/2
c0e

2πitξ0e−2πitξ0 dt. =
1

r

∫ r/2

−r/2
c0 dt = c0 (10.4)

as expected. For ξ 6= ξ0, we get

1

r
1[− r

2
, r
2
]f̂(ξ0) = c0 sinc(πr(ξ − ξ0)), (10.5)

Compared to (10.3), the RHS of (10.5) has been squeezed horizontally by a factor of r. If r

is much greater than 1, then we see |ξ − ξ0| needs to be really small for the RHS of (10.5)

to be close to c0.

Thanks to the extra factor of r in (10.5), we can say that the “frequency resolution” has

improved by a factor of r. However, the cost is that the “time resolution” has worsed by the

same factor of r: our time interval is now r times bigger. When we measure the strength of

a frequency this way, we don’t know where in [− r
2
, r
2
] the frequency is strong.

In general, if we try to increase (i.e., improve) the frequency resolution, the time resolution

decreases (worsens) by the same factor. Conversely, if we try to increase the time resolution,

the frequency resolution decreases by the same factor. This means that it is impossible to

define a function φ(t, ξ) to measure the strength of frequency ξ (exactly) at time t (exactly).

We instead have

(uncertainty in time) · (uncertainty in frequency) ≥ constant (10.6)

This is a manifestation of the Heisenberg uncertainty principle. This principle comes in many

forms, but they all have something to do with the impossibility of “localizing” both f and

f̂ . (In quantum mechanics, f corresponds to the “position operator” and f̂ corresponds to

the “momentum operator.”) See Neeraja’s Week 4 class for more information about the

Heisenberg uncertainty principle.

Fun fact 10.2. The usual formulation of the uncertainty principle is the following:

If

∫ ∞
−∞
|f(x)|2 dx = 1, then

(∫ ∞
−∞

x2|f(x)|2 dx
)(∫ ∞

−∞
ξ2|f̂(ξ)|2 dξ

)
≥ 1

16π2
. (10.7)

Fun fact 10.3. If we want to avoid issues caused by the uncertainty principle in our study of

the phase space above, we could use wavelets. https://en.wikipedia.org/wiki/Wavelet
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10.2 Some other things you can do with the Fourier transform

The following is true for all functions f ∈ S(R) and is called the Poisson summation formula:

∞∑
n=−∞

f(n) =
∞∑

n=−∞

f̂(n) (10.8)

Unlike most things we’ve seen about the Fourier transform, this has no analogue for Fourier

series. To give a demonstration of how useful it is, the Poisson summation formula can be

used to calculate the series
∑∞

n=1
1
n2k , prove quadratic reciprocity, the functional equation

for the zeta function, the Whittaker–Shannon interpolation formula (Exercise 11.1) from

information theory, and more.

10.3 Fourier analysis on Z/NZ

With Fourier series, we had f : R → C a 1-periodic function. But now suppose we replace

R with 1
N
Z = { k

N
: k ∈ Z}. (Warning: the group 1

N
Z is not the same as Z/N , which is the

group of integers modulo N .)

So now suppose f : 1
N
Z → C is a 1-periodic function. How can we define Fourier series

for f? Before we had an integral. But now we only have a few values that we can plug into

f . So let’s change the integral into a Riemann sum! The integral was
∫ 1

0
f(x)e−2πinx dx (See

(8.1).) Now we split [0, 1] into N intervals to get the following Riemann sum:

an =
1

N

N−1∑
k=0

f
(
k
N

)
e−2πink/N n = 0, 1, . . . , N − 1 (10.9)

Then we do indeed have the reconstruction/inversion formula (analogue of (8.2))

f(x) =
N−1∑
n=0

ane
2πinx, x = 0,

1

N
, . . . ,

N − 1

N
(10.10)

as well as the Parseval-Plancherel formula (analogue of (8.3))

1

N

N−1∑
k=0

∣∣f ( k
N

)∣∣2 =
N−1∑
n=0

|an|2 (10.11)

We can think of the function f above as being defined on the group {0, 1
N
, . . . , N−1

N
}

with addition modulo 1. But perhaps it’s nicer to rescale everything by N , to get the group

{0, 1, . . . , N − 1} with addition modulo N . This group is denoted Z/NZ or Z/N . Let’s

restate the results above in terms of this group.
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Theorem 10.4. Let F : Z/NZ→ C be any function. Define

an =
1

N

N−1∑
k=0

F (k)e−2πink/N n = 0, 1, . . . , N − 1 (10.12)

Then

F (k) =
N−1∑
k=0

ane
2πink/N , k = 0, 1, . . . , N − 1 (10.13)

and

1

N

N−1∑
k=0

|F (k)|2 =
N−1∑
n=0

|an|2 (10.14)

Proof. We actually didn’t give the proofs in the previous settings (when we considered f :

R/2πZ → C or f : R → R), because we had to worry about infinite sums and improper

integrals. But in the current setting, there are no integrals and all the sums are finite! So

we can actually give a proof!! Except by “we,” I mean “you.” See Exercise 11.2.

Fun fact 10.5. In this section, “a wave of frequency α” means e2πiαx = cos 2παx+i sin 2παx.

If we sample a signal f : [0, 1] → ∞ at times spaced by 1
N

, then a wave of frequency N

looks like a constant wave. Mathematically, e2πi(α+N)x = e2πiαx for all x ∈ 1
N
Z.

In general, we cannot tell the difference between a wave of frequency α and a wave of

frequency α +N . Mathematically, e2πi(α+N)x = e2πiαx for all x ∈ 1
N
Z.

So a wave of frequency α = 3
4
N looks like a wave of frequency α = −1

4
N . However, if we

knew in advance that our signal only had frequencies between −1
2
N and 1

2
N , then there’s

no ambiguity.

This is related to the Nyquist–Shannon sampling theorem and the Whittaker–Shannon

interpolation formula.

Fun fact 10.6. If we have a function F : Z/NZ→ C and we’d like to calculate the Fourier

coefficients (an)n=0N − 1, using (10.12) directly would result in O(N2) multiplications, which

is too slow for many practical applications. Fortunately, there’s a much better way, called

the fast Fourier transform, which allows us to calculate the Fourier coefficients in only

O(N logN) multiplications. It is thanks to this algorithm that modern signal processing

works!

See Figure 1 for a comparison of the three kinds of Fourier transforms we have encountered

so far.
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setting functions on [0, 1] functions on R discrete functions

domain of f(x) R/Z R Z/NZ

domain of f̂(ξ) Z R Z/NZ

F. transform f̂(ξ)

∫
R/Z

f(x)e−2πixξ dx

∫
R
f(x)e−2πixξ dx

1

N

∑
x∈Z/NZ

f(x)e−2πixξ/N

F. inversion f(x)
∑
ξ∈Z

f̂(ξ)e2πixξ
∫
R
f̂(ξ)e2πixξ dξ

∑
ξ∈Z/NZ

f̂(ξ)e2πixξ/N

Parseval/Plancherel

∫
R/Z
|f(x)|2 dx

∫
R
|f(x)|2 dx 1

N

∑
x∈Z/NZ

|f(x)|2

=
∑
ξ∈Z

|f̂(ξ)|2 =

∫
R
|f̂(ξ)|2 dξ =

∑
ξ∈Z/NZ

|f̂(ξ)|2

Figure 1: Some connections among the Fourier transforms of various settings. Note that∫
R/Z just means

∫ 1

0
.

10.4 The Fourier transform in higher dimensions

There are higher-dimensional versions of the Fourier transform. To go from 1-dimensional

to d-dimensional, just make both x and ξ vectors (with d components) and replace xξ in the

formulas with the dot product x · ξ. See Figure 2 for a summary.

Fun fact 10.7. If we consider Fourier analysis on (Z/2Z)d (see Figure 2), then this is

precisely the setting encountered in Tim!’s Week 1 Fourier analysis of Boolean functions

class.

Fun fact 10.8. In Rd or (R/Z)d, there are analogues of low-pass filters that we talked about.

However, we have to be careful. Some low-pass filters behave very badly. I unfortunately

cannot talk about this in more detail without first introducing a lot of background. But I

will say that the reason such filters can behave badly in higher dimensions is because of the

existence of Kakeya sets, a topic in my Week 4 class.

10.5 The Fourier transform in even more generality

Here is a very general statement that contains all the results in the tables above as special

cases. To understand the statement, you need to know some group theory, some topology,
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setting functions on [0, 1]d functions on Rd discrete functions

domain of f(x) (R/Z)d Rd (Z/NZ)d

domain of f̂(ξ) Zd Rd (Z/NZ)d

F. transform f̂(ξ)

∫
(R/Z)d

f(x)e−2πixξ dx

∫
Rd

f(x)e−2πixξ dx
1

Nd

∑
x∈(Z/NZ)d

f(x)e−2πixξ/N

F. inversion f(x)
∑
ξ∈Zd

f̂(ξ)e2πixξ
∫
Rd

f̂(ξ)e2πixξ dξ
∑

ξ∈(Z/NZ)d
f̂(ξ)e2πixξ/N

Parseval/Plancherel

∫
(R/Z)d

|f(x)|2 dx
∫
Rd

|f(x)|2 dx 1

Nd

∑
x∈Z/NZ

|f(x)|2

=
∑
ξ∈Zd

|f̂(ξ)|2 =

∫
Rd

|f̂(ξ)|2 dξ =
∑

ξ∈(Z/NZ)d
|f̂(ξ)|2

Figure 2: Higher dimensional version of Figure 1. Note that dx = dx1 dx2 · · · dxd and

similarly for dξ.

and some measure theory. See https://en.wikipedia.org/wiki/Pontryagin_duality for

more information.

Theorem 10.9. Let G be a locally compact abelian group with Haar measure µ. Let Ĝ be

the Pontryagin dual of G and let ν be the dual measure. For f ∈ L1(G), define the Fourier

transform of f by

f̂(χ) =

∫
G

f(x)χ(x) dµ(x). (10.15)

If f̂ ∈ L1(Ĝ), then we have the Fourier inversion formula

f(x) =

∫
Ĝ

f̂(χ)χ(x) dν(χ). (10.16)

If f ∈ L1(G) ∩ L2(G), then we have the Parseval/Plancherel theorem∫
G

|f(x)|2 dµ(x) =

∫
Ĝ

|f̂(χ)|2 dν(χ). (10.17)

Fun fact 10.10. All finite abelian groups are compact and hence locally compact, so we

can do Fourier analysis on them. In fact, Fourier analysis on finite abelian groups is closely

related to the representation theory of these groups.
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11 Day 5 exercises

Exercise 11.1. ( ) Suppose that f ∈ S(R) is a function such that f̂(ξ) = 0 for all

|ξ| > 1
2
. Prove that

f(x) =
∞∑

n=−∞

f(n)
sin π(x− n)

π(x− n)
(11.1)

This formula says that if f only has small frequencies (smaller than 1
2
), and we know the

values of f at the integers, then we can perfectly reconstruct the whole function f(x). Hint:

Use the Poisson summation formula (10.8).

This is known as the Whittaker–Shannon interpolation formula.

Exercise 11.2. ( ) Prove Theorem 10.4. There are several ways you could do this. You

could use define an inner product as in Fun fact 2.6. Or you could just expand out all the

sums and rearrange terms around until everything cancels.
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