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1 Introduction

1.1 Course blurb

This class is a rigorous introduction to limits and related concepts in calculus. Consider the

following questions:

1. Every calculus student knows that d
dx

(f+g) = f ′+g′. Is it also true that d
dx

∑∞
n=1 fn =∑∞

n=1 f
′
n?

2. Every calculus student knows that a+ b = b+ a. Is it also true that you can rearrange

terms in an infinite series without changing its sum?

Sometimes, things are not as they seem. For example, the answer to the second question

is a resounding “no.” The Riemann rearrangement theorem, which we will prove, states that

we can rearrange the terms in infinite series such as
∑∞

n=1
(−1)n
n

so that the sum converges

to π, e, or whatever we want!

To help us study the questions above and many other ones, the key tool we’ll use is the

“epsilon-delta definition” of a limit. This concept can be hard to work with at first, so we

will study many examples and look at related notions, such as uniform convergence. Being

comfortable reasoning with limits is central to the field of mathematical analysis, and will

open the door to some very exciting mathematics.

1.2 About this class

This class is a rigorous introduction to limits and related concepts in calculus. The key

concept is the formal definition of a limit, sometimes called the “epsilon-delta definition.”

The definition itself is not long and not hard to memorize. But working with this definition
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can be difficult. So that is the main focus of this class, and the main thing I would like you

to gain from this class, is the technique of working with limits and related concepts. The

theorems we prove are not as important as how we prove them. Nevertheless, we will see

some beautiful and some surprising theorems, and being proficient with epsilon-delta proofs

will open the door to some very exciting areas of mathematics.

1.3 About these notes

These notes will be updated after class each day to reflect what was covered and to provide

exercises for that day. Note that these notes are very rough, and probably don’t make much

sense unless you have been to lecture. In particular, pictures are very important for this

class, but there are no pictures here!

1.4 Textbook references

A good introductory text on this topic is Michael Spivak’s Calculus (published by Publish

or Perish). Chapters 5, 6, 22, 23, 24 are particularly relevant.

2 Day 1

2.1 Why we need rigor in calculus

Here I will present some phenomena that arise when we study infinite series. Recall that

infinite series are defined by taking a limit of the partial sums:
∑∞

k=1 ak is defined by

limn→∞
∑n

k=1 ak. This means that limits are lurking in the background.

2.1.1 Infinite series of functions

Suppose f and g are two functions defined on [0, 1]. We know that addition has the following

properties.

1. If f and g are continuous, then f + g is continuous.

2. If f and g are differentiable, then (f + g)′ = f ′ + g′.

3. If f and g are Riemann integrable, then
∫ 1

0
(f(x) + g(x)) dx =

∫ 1

0
f(x) dx+

∫ 1

0
g(x) dx.

These results also hold for finite sums of functions. But what about infinite sums?

Suppose we have a sequence of functions f1, f2, . . . defined on [0, 1]. Let g(x) =
∑∞

k=1 fk(x).

1. If the fn are all continuous, is it true that g is continuous?
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2. If the fn are all differentiable, is it true that g′(x) =
∑∞

n=1 f
′
n(x)?

3. If the fn are all Riemann integrable, is it true that
∫ 1

0
g(x) dx =

∑∞
n=1

∫ 1

0
fn(x) dx?

The answer to all three is “not in general.” It turns out that in some situations, the

results are true. For example, for Taylor series, you can differentiate and integrate term by

term with no problem.

In general, what assumptions about the sequence fn should we make to guarantee that

these statements continue to hold for infinite sums?

2.1.2 Rearranging terms in a series

In calculus class, you learned that

1− 1

2
+

1

3
− 1

4
+ · · · = log 2. (2.1)

(Note that mathematicians typically use log to denote the natural log.)

What happens if we decide to sum up the terms in a different order? We could rearrange

the terms in the infinite series to obtain:(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+ · · · (2.2)

=
1

2
− 1

4
+

1

6
− 1

8
+ · · · (2.3)

=
1

2

(
1− 1

2
+

1

3
− 1

4
+ · · ·

)
(2.4)

=
1

2
log 2 (2.5)

For finite sums, we can rearrange terms with no issue. This leads to some natural

questions:

1. When can we rearrange terms in infinite sums without changing the value?

2. When the values do change, which values could we actually achieve?

2.2 Definition of a limit

(Reference: Spivak, Chapter 5.)

The limit is one of the most important and fundamental concepts in calculus.

The equation limx→c f(x) = L means, roughly speaking that as x approaches c, f(x) gets

close to L. But what is meant by “approaches” and “gets close to”?

The concept was not formalized until the 1800s.

Here is the formal definition of a limit:
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Definition 2.1. limx→c f(x) = L means: “For all ε > 0, there exists a δ > 0 such that for

all x, if 0 < |x− c| < δ, then |f(x)− L| < ε.”

2.3 Quantifiers

We’ll use the following symbols: ∀ means “for all,” and ∃ means “there exists.” Also, “s.t.”

stands for “such that.”

Example 2.2. Consider the following statements.

1. ∀x ∈ R, x2 ≥ 0. True.

2. ∀x ∈ R, x2 ≥ 1. False.

3. ∀x ∈ R, x2 ≤ −1. False.

4. ∃x ∈ R s.t. x2 ≥ 0. True.

5. ∃x ∈ R s.t. x2 ≥ 1. True.

6. ∃x ∈ R s.t. x2 ≤ −1. False.

So far so good. But things can become more complicated when we string many of the

quantifiers together.

Example 2.3. Consider the following statements.

1. ∀x ∈ R,∃y ∈ R s.t. x+ y = 0. True.

2. ∀x ∈ R,∃y ∈ R s.t. xy = 1. False.

3. ∃y ∈ R s.t. ∀x ∈ R, x+ y = 0. False

Definition 2.4. limx→c f(x) = L means:

∀ε > 0,∃δ > 0 s.t. ∀x, if 0 < |x− c| < δ then |f(x)− L| < ε (2.6)

Yikes. Let’s just look at the last part: ∀x, if 0 < |x− c| < δ then |f(x)− L| < ε

We can think of 0 < |x− c| < δ as the vertical strip between x = c± δ. We also have to

remove the line x = c.

We can think of |f(x)− L| < ε as the horizontal strip between y = f(x)± L.

A geometric interpretation: The statement means that whenever we’re at a point on the

graph of f inside the vertical strip, then it also lies inside the horizontal strip.

Example 2.5. Consider f(x) = x2, c = 2, L = 4.
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1. ∀x, if 0 < |x − 2| < 1, then |x2 − 4| < 5. True. (If you replace 5 with something

smaller, it is not true. If you replace the 1 with something larger, it is not true.)

Protip 2.6. Whenever you see the expression |a − b|, you can mentally think of this as

quantity as “the distance between a and b.” That will help you think about the limit

definition geometrically.

2.4 The definition of a limit as a game (or Pokémon R© Battle)

Start with a function f(x) and two real numbers c and L.

Let’s break the limit definition down into four parts:

1. ∀ε > 0,

2. ∃δ > 0 s.t.

3. ∀x, if 0 < |x− c| < δ then

4. |f(x)− L| < ε

We can take these four parts and translate them into a “game” between two players, who

we will call Delphox and Espeon. Delphox want to show limx→c f(x) = L, and Espeon wants

to show this is false.

Here are the steps of the game:

1. Espeon starts by choosing ε > 0.

2. Delphox responds by choosing δ > 0.

3. Espeon responds by choosing x satisfying 0 < |x− c| < δ.

4. Delphox responds by proving that |f(x)− L| < ε.

If Espeon can play the game in a way to make Delphox unable to complete the last step,

then Espeon wins. Otherwise, Delphox wins.

Protip 2.7. Note that each step of the game corresponds to a part of the statement of the

limit definition.

In general, if you see a mathematical statement with lots of ∀s and ∃s, you can convert

it into a two-player game, in the same way as we did above.
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2.4.1 A more geometric description

Start by drawing the graph y = f(x).

Step 1 of the game: Espeon starts by choosing some ε > 0. E draws the horizontal lines

y = L− ε and y = L+ ε on the graph.

Step 2 of the game: Delphox has to respond by choosing some δ > 0. D draws the vertical

lines x = c− ε and x = c+ ε on the graph.

Steps 3 and 4 of the game: Delphox’s response is valid if the following is satisfied: In

between Delphox’s two vertical lines, the graph of f lies entirely within Espeon’s horizontal

lines (with the possible exception of the point (c, f(c))).

There are two possibilities:

If Espeon has a move for which Delphox cannot respond, then Espeon wins, and limx→c f(x) 6=
L.

If no matter how Espeon moves, Delphox always has a response, then Delphox wins, and

limx→c f(x) = L.

2.5 Examples

We’ll see some examples of proving statements of the form limx→c f(x) = L and limx→c f(x) 6=
L. Many textbooks will make a statement and jump straight to its proof. It might be tempt-

ing to do this in real life, but there’s usually some kind of thought process/scratch-work

involved before we can write down the proof. In the examples that follow, I’ll explain some

scratch-work that we can do to bring us to the proof.

Example 2.8. Let’s show limx→3 2x = 6.

Scratch-work. Espeon starts with by choosing ε > 0. How can Delphox respond? By

choosing δ = 1
2
ε. We can see from a picture that this clearly works.

Proof. Suppose ε > 0. Then let δ = 1
2
ε. Suppose 0 < |x−3| < δ. Then |2x−6| = 2|x−3| <

2δ = ε.

Protip 2.9. In the example above, we don’t have to take δ = 1
2
ε. For example, δ = 1

10
ε

would also work. We can take anything smaller than 1
2
ε. In general, there is no single correct

value of δ.

Protip 2.10. Every proof of limx→c f(x) = L more or less has the following structure.

1. Suppose ε > 0.

2. Then let δ = [some expression involving epsilon]
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3. Suppose 0 < |x− c| < δ.

4. Then [some argument to show that |f(x)− L| < ε]

This structure is dictated by the definition of the limit. It also follows the structure of

the game between Espeon and Delphox described above.

Example 2.11. Consider the statement limx→3 2x 6= 0.

Scratch-work. Since we do not want to show inequality, we should imagine ourselves as

Delphox. What can we choose so as ε so that Espeon has no valid response? Let’s try ε = 1.

If Delphox tries to respond with some δ > 0, we can show that the number 3+ δ
2

lies between

the two vertical lines, but 2(3 + δ
2
) does not lie between the two horizontal lines.

Proof. Let ε = 1. Suppose δ > 0. Then let x = 3 + δ
2
. Then 0 < |x − 3| < δ, but

|2x− 0| = 6 + δ > 1 = ε.

Protip 2.12. Every proof of limx→c f(x) 6= L more or less has the following structure.

1. Let ε = [something]

2. Suppose δ > 0

3. Let x = [something which satisfies 0 < |x− c| < δ ]

4. Then 0 < |x− c| < δ and [some argument to show that |f(x)− L| ≥ ε]

This structure is dictated by the definition of the limit.

Example 2.13. Consider limx→2 x
2 = 4.

Scratch-work. For the linear functions above, it was easy to consider all ε at once. Here, it’s

not as easy. Let’s think about a single ε as an example. Suppose Espeon chooses ε = 1. We

need to find δ. We can consider |x2− 4| < 1. This means 3 < x2 < 5, so
√

3 < |x| <
√

5. So

we can take δ = min(
√

5− 2, 2−
√

3) =
√

5− 2 ≈ 0.236.

By the same reasoning, for general ε, we should be able to take δ =
√

4 + ε− 2.

Proof. I’ll leave the details to you as an exercise. See Exercise 3.4.

The previous example worked because it’s easy to solve for x in |x2 − 4| < ε. However,

if your function f(x) is a more complicated polynomial than x2, it may be very difficult to

solve for x in |f(x)− L| < ε.

9



Fun fact 2.14. In fact, for a polynomial P (x) of degree 5 or higher, then there does not

exist a general formula for the roots of P in terms of radicals. To prove this, you need

abstract algebra, in particular, Galois theory.

Let’s see how to handle x2 in a different way below. It may seem more complicated, but

the approach is more flexible.

Example 2.15. Consider again limx→2 x
2 = 4.

Scratch-work. If B chooses ε. We want to make sure that if 0 < |x−2| < δ, then |x2−4| < ε.

|x2 − 4| = |x− 2||x + 2| < δ|x + 2|. We haven’t chosen δ yet. But at this point, we can

decide that we’ll always choose δ ≤ 1. So |x − 2| < 1. This implies |x + 2| < 5. Draw a

picture to see this!

So |x2−4| < 5δ. So we can decide to always choose δ < 1
5
ε. Taking δ = min(1

5
ε, 1) works!

Proof. Suppose ε > 0. Then let δ = min(1
5
ε, 1). Suppose 0 < |x− 2| < δ. Then |x− 2| < 1,

so |x+ 2| < 5. Also, |x2 − 4| = |x− 2||x+ 2| < δ · 5 ≤ 1
5
ε · 5 = ε.

2.6 Triangle inequality

The triangle inequality, in its most basic form, states that for all real numbers a and b, we

have |a+ b| ≤ |a|+ |b|. We’ll use it a lot in this class.

For example, it tells us |x − y| = |(x − z) + (z − y)| ≤ |x − z| + |y − z|. (This makes a

lot of sense geometrically if you think in terms of “distances.”)

In Example 2.15, we used the triangle inequality to deduce |x + 2| = |x − 4 + 2| ≤
|x− 2|+ 4 < 1 + 4 = 5.

2.7 Limits are unique

In the definition of a limit, I gave a definition for the entire statement “limx→c f(x) = L.”

From this definition, it does not immediately follow that a function cannot have two different

limits as x→ c. We need to prove it!

Theorem 2.16. If limx→c f(x) = L1 and limx→c f(x) = L2, then L1 = L2

Scratch-work. First of all, notice that this proof will be different from all the previous proofs.

Why? In the previous proofs, we had to prove that a statement like limx→c f(x) = L1 is

true. But now we are given that such a statement is true.

Suppose for contradiction that L1 6= L2. How can f(x) get close to both L1 and L2?

Intuitively, it can’t!
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The statements limx→c f(x) = L1 and limx→c f(x) = L1 tell us something about horizon-

tal strips around y = L1 and y = L2. Working with two horizontal strips feels fishy... we

should be able to get a contradiction somehow... but how?

Proof. This is for you to figure out! See Exercise 3.12.

Fun fact 2.17. In point-set topology, there is a definition of a limit that works in more

situations and for more spaces. In some of these spaces, the above theorem is false. Limits

there are not necessarily unique! Yikes!

2.8 Continuity

Definition 2.18. We say that f is continuous at c if limx→c f(x) = f(c). Equivalently:

∀ε > 0,∃δ > 0 s.t. ∀x, if |x− c| < δ then |f(x)− f(c)| < ε (2.7)

Note that now there is no reason to exclude x = c. In fact, in the examples above, there

was no reason to exclude x = c. So we were in fact proving statements about continuity.

Definition 2.19. Let f : A→ R. We say that f is continuous if for all c ∈ A, f is continuous

at c. Equivalently:

∀c ∈ A, ∀ε > 0,∃δ > 0 s.t. ∀x ∈ A, if |x− c| < δ then |f(x)− f(c)| < ε (2.8)

3 Day 1 Exercises

3.1 Difficulty scale

Here is my attempt at making a difficulty scale.

• : Should be fairly routine. Try copying or adapting something from class or from

the notes, or try applying some theorem we learned.

• : Requires a bit more thought.

• : Requires a solid understanding of the relevant concepts.

Don’t be afraid of difficult problems! It’s by struggling with these exercises that you really

learn.
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3.2 Required problems for Day 1

At the very least, you should do (or know how to do) every problem labeled and read the

statements of all the other problems. If you have difficulties with any of these, please come

find me during TAU or send me a message on Slack at any time (including after TAU).

Exercise 3.12 is a particularly important problem to check if you understand the limit

definition. You should make a serious attempt to solve the problem. (This doesn’t have to

be by yourself! Talk to others or come talk to me!)

3.3 Some exercises with specific functions

For each of these, write down a full proof. You don’t need to write down your scratch-work,

but the process can be very helpful.

Exercise 3.1. ( ) Show limx→−1 3 = 3.

Exercise 3.2. ( ) Show limx→5(−2x+ 4) = −6.

Exercise 3.3. ( ) Let a, b, c ∈ R. Show that limx→c(ax + b) = ac + b. (Hint: You might

want to consider the cases a = 0 and a 6= 0 separately.)

Exercise 3.4. ( ) Finish the argument in Example 2.13.

Exercise 3.5. ( ) Show limx→1(x
2 + 3x− 2) = 2. (Hint: You can try to adapt the method

in Example 2.13 or in Example 2.15. One of these will be easier to use here. Which one?)

Exercise 3.6. ( ) Show limx→2 x
3 = 8.

Exercise 3.7. ( ) Let p(x) be any polynomial. (So p(x) is of the form anx
n +

an−1x
n−1 + · · ·+ a1x+ a0.) Let c be any real number. Prove that limx→c p(x) = p(c).

Exercise 3.8. ( ) Show limx→0 sin 1
x
6= 0.

Exercise 3.9. ( ) The symbol Q denotes the set of rational numbers. The characteristic

function of the rationals is the following function:

1Q(x) =

1 if x ∈ Q

0 if x 6∈ Q
(3.1)

Show that f(x) = 1Q(x) is not continuous at x = 0.

Exercise 3.10. ( ) Show that f(x) = x1Q(x) is continuous at x = 0.
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3.4 Limits for general functions

Exercise 3.11. ( ) (One sided limits) Without looking them up, figure out what the

definitions for limx→c+ f(x) = L and limx→c− f(x) = L should be. (Hint: Think about the

pictures we described in class, and how these should the modified to account for one-sided

limits.)

Exercise 3.12. ( ) Prove Theorem 2.16: If limx→c f(x) = L1 and limx→c f(x) = L2,

then L1 = L2.

Exercise 3.13. ( ) Let f : R→ R and g : R→ R. Show that if f is continuous at

x and g is continuous at f(x), then the composition g ◦ f is continuous at x.

Exercise 3.14. ( ) Let f, g, h be functions R→ R such that for all x, f(x) ≤ g(x) ≤
h(x). Show that if limx→0 f(x) = limx→0 h(x) = 0, then limx→0 g(x) = 0. (This is known as

the squeeze theorem.)

3.5 Some exercises with quantifiers

Exercise 3.15. ( ) Give examples to show that the following definitions of limx→c f(x) =

L are not correct.

1. ∀δ > 0,∃ε > 0 s.t. ∀x, if 0 < |x− c| < δ, then |f(x)− L| < ε

2. ∀ε > 0,∃δ > 0 s.t. ∀x, if |f(x)− L| < ε, then 0 < |x− c| < δ

Exercise 3.16. ( ) Let f(x) = x2. Are the following statements true?

1. ∀ε > 0,∃δ > 0 s.t. ∀x ∈ R,∀c ∈ R, if |x− c| < δ then |f(x)− f(c)| < ε

2. ∀ε > 0,∃δ > 0 s.t. ∀x ∈ [0, 1],∀c ∈ [0, 1], if |x− c| < δ then |f(x)− f(c)| < ε

Note that there are different from (2.8). To see how they differ, it might be helpful translating

these statements into games.

(The relevant concept here is called uniform continuity. The two questions in this exercise

can be rephrased as: (1) Is f uniformly continuous on R? (2) Is f uniformly continuous on

[0, 1]? We will not need this concept for the remainder of this week.)

4 Day 2

4.1 Limits are unique

Here is Theorem 2.16 again, now with a proof. See the scratch-work below Theorem 2.16 to

motivate the proof given below.
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Theorem 4.1. If limx→c f(x) = L1 and limx→c f(x) = L2, then L1 = L2

Proof. Suppose for contradiction that L1 6= L2. Let ε = 1
2
|L1 − L2|.

Since limx→c f(x) = L1, there exists a δ1 > 0 such that if 0 < |x − c| < δ1, then

|f(x)− L1| < ε.

Since limx→c f(x) = L2, there exists a δ2 > 0 such that if 0 < |x − c| < δ2, then

|f(x)− L2| < ε.

Fix a single x0 satisfying 0 < |x0−c| < min(δ1, δ2). By the triangle inequality, |L1−L2| ≤
|f(x0)− L1|+ |f(x0)− L2| < 2ε = |L1 − L2|. This is a contradiction.

4.2 Basic limit properties

Theorem 4.2. limx→c(ax+ b) = ac+ b.

Proof. This was Exercise 3.3.

Theorem 4.3. If limx→c f(x) = L and limx→c g(x) = M , then limx→c[f(x)+g(x)] = L+M .

Scratch-work. Our goal is to show limx→c[f(x) + g(x)] = L+M . Recall that this means:

∀ε > 0,∃δ > 0 s.t. ∀x, if 0 < |x− c| < δ then |f(x) + g(x)− L−M | < ε (4.1)

Let’s play the game. Espeon gives us an ε.

What we observe is that by the triangle inequality, |f(x) + g(x)−L−M | ≤ |f(x)−L|+
|g(x) −M |. So maybe we should try to show that both |f(x) − L| and |g(x) −M | are less

than ε/2.

We need to choose δ at this stage of our game. But let’s put the limx→c[f(x) + g(x)] =

L+M game on hold for a second and play some other games first. However, let’s remember

the ε that was given to us.

Let’s play the limx→c f(x) = L game, where Epseon starts with ε/2 (instead of the usual

ε). Since we know the limit is L, Delphox has a response to Espeon’s ε/2, which we can call

δ1.

Similarly, if Espeon plays ε/2 in the limx→c g(x) = M game, Delphox has some response,

which we can call δ2.

What is means is:

if 0 < |x− c| < δ1 then |f(x)− L| < ε

2
(4.2)

if 0 < |x− c| < δ2 then |g(x)−M | < ε

2
(4.3)

So back to our limx→c[f(x) + g(x)] = L + M game. At this point we should choose δ =

min(δ1, δ2). (In terms of a picture, this is saying take the smaller of the two vertical strips.)
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Proof. Let ε > 0.

Since limx→c f(x) = L, ∃δ1 > 0 s.t. ∀x, if 0 < |x− c| < δ1 then |f(x)− L| < ε/2.

Since limx→c g(x) = M , ∃δ2 > 0 s.t. ∀x, if 0 < |x− c| < δ2 then |g(x)−M | < ε/2.

Let δ = min(δ1, δ2).

If if 0 < |x−c| < δ, then |f(x)+g(x)−L−M | ≤ |f(x)−L|+ |g(x)−M | < ε
2

+ ε
2

= ε

Theorem 4.4. If limx→c f(x) = L and limx→c g(x) = M , then limx→c[f(x)g(x)] = LM .

Proof. This is an exercise.

Theorem 4.5. If limx→c f(x) = L and L 6= 0, then limx→c
1

f(x)
= 1

L
.

Proof. This is an exercise.

From these properties combined, we can deduce that all polynomials are continuous. And

all rational functions are continuous whenever their denominators are nonzero.

4.3 The case c =∞ and the case L =∞

How do we define limx→c f(x) = L when c =∞ or L =∞?

It doesn’t make sense to just use our definition above and substitute c =∞ or L =∞.

Think about the picture and what changes in the picture. Here’s what we get:

Definition 4.6. limx→∞ f(x) = L means: “∀ε > 0,∃N s.t. ∀x, if x > N then |f(x)− L| <
ε”

Definition 4.7. limx→c f(x) =∞means...? You should figure this out yourself! Exercise 5.1

(Here, the choices of the letter N is not standard. There are no standard choices, although

I usually see one of K,M,N being used here. The capital letter suggests that these numbers

are big)

I do not recommend memorizing these definitions. Instead, try to think about the picture,

and translate that picture into a definition. Once you understand the epsilon-delta definition,

it is easily modified into these cases involving infinity. You don’t need to do any more work!

Observe that the theorem about limits of f(x) + g(x), f(x)g(x) and 1/f(x) all work in

the case x→∞. The proofs are exactly the same.

Example 4.8. Let’s show limx→∞
1
x

= 0.

Scratch-work. Suppose ε > 0. We want 1
x
< ε. So we need x > 1

ε
. (Here’s we’re only looking

at positive x. We don’t care about what happens for negative x since we’re taking x→∞.)

Proof. Suppose ε > 0. Then let N = 1/ε. Suppose x > N . Then | 1
x
− 0| = 1

x
< 1

N
= ε.
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4.4 Limits of sequences

A sequence of numbers is, well, a sequence of numbers. Usually a sequence is written like

a1, a2, a3, . . .. Or we can abbreviate it in various ways, such as (an)∞n=1 or (an)n. (Of course,

we don’t have to start a sequence at n = 1.)

Another way to think about a sequence is that it is a function whose domain is the

natural numbers N = {1, 2, . . .}. If you input n, the function outputs an.

Thinking about sequences as functions defined on the natural numbers is very helpful.

To define limn→∞ an = L, we can use the same definition as before!

Definition 4.9. limn→∞ an = L (or an → L, for short) means:

∀ε > 0,∃N s.t. ∀n ∈ N, if n > N then |an − L| < ε. (4.4)

Also, we say that a sequence (an)n converges or is convergent if there exists an L ∈ R such

that an → L.

We changed some notation (x to n, and f(x) to an), but this doesn’t really change

anything. We could have called our function f(x), where x ∈ N, but by convention sequences

are often written an instead.

Another change we made was we wrote ∀n ∈ N. This is to remind ourselves that the

domain of the function is now N instead of R. But we could have also written ∀n by itself,

with the implicit assumption that n is a natural number. The following is equivalent to the

definition given above:

∀ε > 0,∃N s.t. ∀n > N, |an − L| < ε. (4.5)

4.5 Series

What is the definition of
∑∞

k=1 ak?

First, we can define the sequence of partial sums sn =
∑n

k=1 ak. Then we define
∑∞

k=1 ak

to be limn→∞ sn.

In other words, infinite series are secretly limits of sequences! If we want to understand

infinite series, we should first understand limits of sequences. We’ll return to series later.

4.6 Sequences and series of functions

Reference: (Spivak, Chapter 24)

Sequences and series of numbers are nice, but we’re more interested in sequences and

series of functions. For example, Taylor series such as ex =
∑∞

k=0
xk

k!
.

Recall that an infinite series is just a limit of partial sums. So really, we can first look at

limits of sequences of functions.
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Example 4.10. Let fn be a sequence of functions defined on [0, 1] defined by fn(x) = xn.

Then limn→∞ fn(x) = g(x), where

g(x) =

0 if x ∈ [0, 1)

1 if x = 1
(4.6)

In the above example, we say that fn converges pointwise to g. Let’s give a definition of

this.

Definition 4.11. Let fn be functions defined on some domain A. Then we say fn converges

pointwise to g if

∀x ∈ A, ∀ε > 0,∃N s.t. ∀n, if n > N, then |fn(x)− g(x)| < ε (4.7)

Definition 4.12. Let fn be functions defined on some domain A. Then we say fn converges

uniformly to g if

∀ε > 0,∃N s.t. ∀n, if n > N, then ∀x ∈ A, |fn(x)− g(x)| < ε (4.8)

The pointwise convergence game:

1. Espeon starts by choosing x ∈ A and

ε > 0.

2. Delphox responds by choosing N .

3. Espeon responds by choosing n > N .

4. Delphox responds by showing that

|fn(x)− g(x)| < ε.

The uniform convergence game:

1. Espeon starts by choosing ε > 0.

2. Delphox responds by choosing N .

3. Espeon responds by choosing n > N

and x ∈ A.

4. Delphox responds by showing that

|fn(x)− g(x)| < ε.

The KEY difference is that in the pointwise convergence case, Delphox can see Espeon’s

choice of x before choosing N . However, in the uniform convergence case, Delphox must

make a choice of N without knowing that Espeon’s choice of x is. In fact, Espeon is allowed

to choose x depending on Delphox’s N to give Delphox a hard time.

5 Day 2 exercises

Exercise 5.1. ( ) Give a definition for limx→c f(x) =∞.

Exercise 5.2. ( ) Show limx→∞
1

x5+x+1
= 0.

Exercise 5.3. ( ) Show limx→∞ sinx does not exist.
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Exercise 5.4. ( ) Define the sequence an = (−1)n. Show limn→∞ an does not exist.

Exercise 5.5. ( ) Consider an = 2−n.

1. Calculate the partial sums sn =
∑n

k=1 an. (Hint: consider 2sn)

2. Give a rigorous proof that
∑∞

k=1 ak = 1.

Exercise 5.6. ( ) We define a Cauchy sequence to be a sequence (an)n satisfying the

following:

∀ε > 0, ∃N s.t. ∀m,n > N, |an − am| < ε. (5.1)

Prove that if a sequence (an)n of numbers converges, then it is a Cauchy sequence.

Exercise 5.7. ( ) Prove Theorem 4.4: If limx→c f(x) = L and limx→c g(x) = M , then

limx→c[f(x)g(x)] = LM . (Hint: This is like Theorem 4.3, but you need to start with

f(x)g(x)−LM and somehow rewrite it so it contains the expressions f(x)−L and g(x)−M .

How do you do that?)

Exercise 5.8. ( ) Prove Theorem 4.5: If limx→c f(x) = L and L 6= 0, then limx→c
1

f(x)
=

1
L

.

Exercise 5.9. ( ) Prove that f(x) is continuous at x = c if and only if for all sequences

(an)∞n=1, if an → c, then f(an)→ f(c). (Note: Ben says this fact will be useful in his classes.)

Exercise 5.10. ( ) Prove that if
∑∞

n=1 an converges, then an → 0.

Exercise 5.11. ( ) Prove that if
∑∞

k=1 ak converges, then limn→∞
∑∞

k=n ak = 0.

Exercise 5.12. ( ) Suppose
∑∞

k=1 ak converges. Let N > 0 and let (bn)n be a sequence ob-

tained by rearranging the first N terms of (an)n in some way, and leaving the rest untouched.

(So for n > N , the two sequences are identifcal.) Prove that
∑∞

k=1 ak =
∑∞

k=1 bk.

5.1 Pointwise convergence is not good enough

You don’t need to justify/prove any of the limits. I just want you to play around with some

examples. It might help to think geometrically.

Exercise 5.13. ( ) Find a sequence of functions (fn)∞n=1 defined on [0, 1] with the

following properties:

• Each fn is Riemann integrable

• (fn)n converges pointwise to g

18



• limn→∞
∫ 1

0
fn(x) dx 6=

∫ 1

0
g(x) dx

Exercise 5.14. ( ) Find a sequence of functions (fn)∞n=1 defined on [0, 1] with the

following properties:

• Each fn is continuous

• (fn)n converges pointwise to g

• g is not continuous

Exercise 5.15. ( ) Find a sequence of functions (fn)∞n=1 defined on [0, 1] with the

following properties:

• Each fn is differentiable

• (fn)n converges pointwise to g

• (f ′n)n does not converge pointwise to g′

5.2 Uniform convergence saves the day?

Exercise 5.16. ( ) Suppose (fn)n converges uniformly to g. Prove that (fn)n converges

pointwise to g.

Exercise 5.17. ( ) Let (fn)n and g be as in Example 4.10.

1. Does (fn)n converge uniformly to g on [0, 1]?

2. What about on [0, 1
2
]? (In other words, restrict the domains of fn and g to [0, 1

2
].)

Exercise 5.18. ( ) If (fn)n is a sequence of Riemann integrable functions defined on

[a, b] and fn converges uniformly to g, then is it true that limn→∞
∫ b
a
fn(x) dx =

∫ b
a
g(x) dx?

Exercise 5.19. ( ) If (fn)n is a sequence of continuous functions and fn converges

uniformly to g, then is it true g is continuous?

Exercise 5.20. ( ) If (fn)n is a sequence of differentiable functions and fn converges

uniformly to g, then is it true g is differentiable? Is it true that (f ′n)n converges pointwise

to g′? Converges uniformly?
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6 Day 3

6.1 Pointwise vs uniform convergence

When you have a sequence of functions (fn)n, you can try to picture it as a movie. First you

see the graph of y = f1(x). Then it disappears and you see the graph of y = f2(x). And so

on. (So you can think of n as the “time” in this movie.)

Let’s try to think about pointwise and uniform convergence of (fn)n to g in terms of

these “movies.” (See also Section 4.6 for interpretations in terms of games.)

In pointwise convergence, you keep track of only one x-coordinate: someone (Espeon?)

gives you two things: A point x0 and an ε > 0. Draw the “wiggly strip” between y = g(x)−ε
and y = g(x) + ε. As the movie plays you keep track of only the point (x0, fn(x0)) of the

graph. Ignore the other x-coordinates. After some time, this point should be inside the

wiggly strip.

In uniform convergence, you keep track of the entire function as it changes. some gives

you ε > 0. Again, consider the “wiggly strip” between y = g(x)− ε and y = g(x) + ε. After

some time moment of your movie, the entire graph of y = fn(x) will always be inside this

strip.

6.2 Uniform convergence and integration

Because of time, we’re not going to rigorously define the Riemann integral of a function. It

can be defined by limits, but we need a more general notion of limit than what we have so

far, involving things called nets.

We will use the following property of integrals without proof. Triangle inequality for

Riemann integral:
∣∣∣∫ ba f(x) dx

∣∣∣ ≤ ∫ ba |f(x)| dx.

Theorem 6.1. If (fn)n is a sequence of Riemann integrable functions defined on [a, b] and

fn converges uniformly to g, then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

g(x) dx. (6.1)

In other words, we can interchange the limit and the integral:

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx (6.2)

You can see the idea of the proof by drawing a picture.

Proof. Let ε > 0.

Since (fn)n converges uniformly to g, there exists an N such that for all n, if n > N ,

then for all x ∈ [a, b], |fn(x)− g(x)| < ε
(b−a) .
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For n > N , it follows that∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

g(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

[fn(x)− g(x)] dx

∣∣∣∣ (6.3)

≤
∫ b

a

|fn(x)− g(x)| dx (6.4)

<

∫ b

a

ε

(b− a)
dx (6.5)

= ε (6.6)

What allowed this proof to work is that we were able to pick a single N that works for

all x ∈ [a, b]. If we only had pointwise convergence, we would not have been able to do line

(6.5).

In fact, the theorem is false if we replace uniform convergence with pointwise conver-

gence. (You were asked to show this in Exercise 5.14.) Here is a rough description of a

counterexample:

Example 6.2. Consider a sequence of functions fn on [0, 1], such that each fn has a large

“spike” and that the spike moves towards 0 as n → ∞. John Conway described this as a

“tsunami.” (This description probably doesn’t make any sense unless you see the picture...)

This sequence converges pointwise to the zero function, but the sequence
∫ 1

0
fn(x) dx does

not converge to 0. If you fill in the details, this gives a solution to Exercise 5.14

Fun fact 6.3. There’s actually a much more powerful version of Theorem 6.1 called the

dominated convergence theorem: Suppose fn : R→ R is a sequence of functions such that

1. Each (fn)n is Lebesgue integrable and the sequence converges pointwise to g.

2. There exists a nonnegative function h such that
∫∞
−∞ h(x) dx < ∞ and such that for

all n and x, |fn(x)| ≤ h(x).

Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

g(x) dx (6.7)

Note that you need to use the Lebsegue theory of integration (which is beyond the scope of

this class). This theorem is false for Riemann integration.
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6.3 Uniform convergence and continuity

Again, pointwise convergence is not enough to preserve continuity. Example 4.10 is an

example where the functions fn are continuous but the pointwise limit g is not. In fact,

this example can also be used to create an example of a sequence of continuous functions hn

such that
∑
hn(x) converges pointwise, but the function

∑∞
n=1 hn(x) is not continuous. See

Exercise 7.3.

Theorem 6.4 (Uniform limit theorem). If (fn)n is a sequence of continuous functions defined

on A and fn converges uniformly to g : A→ R, then g is continuous.

Scratch-work. Here are some rough ideas.

So we want to be able to compare g(x) with g(c) and show that they are close. But all

we know is that g is the uniform limit of the sequence (fn). So here’s the idea:

1. Show g(c) is close to fn(c). We can use uniform convergence here.

2. Show fn(c) is close to fn(x). We can use the fact that fn is continuous.

3. Show fn(x) is close to g(x). We can again use uniform convergence. (In fact this step

would be impossible if we only had pointwise convergence!)

I wasn’t really precise with the meaning of “close”...

Proof. We’ll prove this tomorrow, but you should try it on your own first. Exercise 7.7.

6.4 Uniform convergence and differentiation

It turns out differentiation are much harder than integration and continuity. Uniform con-

vergence of fn was enough for both integration and continuity, but it turns out it is not

enough for differentiation.

Here is a counterexample to show it is false.

Example 6.5. Consider a sequence of functions fn which oscillate like a wave (e.g., like a

sine or a cosine). As n increases, the amplitude of the wave decreases, but the frequency

increases. If you do this correctly, then (fn) converges uniformly to the zero function, but

f ′n does not converge to the zero function, not even pointwise. You should fill in the details

in Exercise 7.5.

Theorem 6.6. Let [a, b] be an interval. Let fn : [a, b] → R be a sequence of functions with

the following properties.

1. (fn)n converges pointwise to some function f .
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2. For all n, f ′n exists and is continuous.

3. (f ′n)n converges uniformly to some function g

Then f is differentiable and f ′ = g.

(Note: There are ways to slightly weaken the conditions in the hypothesis and achieve

the same conclusion. But in practice, the version I have stated is usually good enough. The

third condition, about the uniform convergence of the sequence (f ′n)n is essential.)

Proof. This is also an exercise. See Exercise 7.8. Because of time, we’re not going to prove

this one in class. See me if you’d like a hint or if you’d like me to explain the proof.

7 Exercises

Exercise 7.1. ( ) Let fn : R→ R be defined by fn(x) = 1
n
x2.

1. Does fn converge pointwise on R?

2. Does fn converge uniformly on R?

3. Does fn converge pointwise on [0, 100]?

4. Does fn converge uniformly on [0, 100]?

Exercise 7.2. ( ) Repeat Exercise 7.1 but with fn(x) = 1
n

sinx.

7.1 Some important counterexamples

The counterexamples in this section answer some of the questions posed in Section 2.1.1.

Exercise 7.3. ( ) Use Example 4.10 to construct an example of a sequence of continuous

functions hn : [0, 1] → R such that
∑
hn(x) converges pointwise to a function that is not

continuous.

Exercise 7.4. ( ) First, do Exercise 5.14 if you haven’t already. (Hint: consider a function

as described in Example 6.2.)

Now use Exercise 5.14 to construct an example of a sequence of Riemann integrable

functions hn : [0, 1]→ R such that
∑
hn(x) converges pointwise but∫ 1

0

∞∑
n=1

hn(x) dx 6=
∞∑
n=1

∫ 1

0

hn(x) dx (7.1)

You should feel free to any properties of the integral that you know. We don’t have time to

develop the theory of Riemann integration from scratch.
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Exercise 7.5. ( ) Fill in the details of Example 6.5. Use the description there to write

down a sequence of differentiable functions fn : R→ R such that fn converges uniformly to

the zero function, but f ′n does not. (Note that this also solves Exercise 5.20.)

Exercise 7.6. ( ) Use Exercise 7.5 to construct an example of a sequence of Riemann

integrable functions hn : [0, 1]→ R such that
∑
hn(x) converges pointwise but

d

dx

∞∑
n=1

hn(x) 6=
∞∑
n=1

h′n(x) (7.2)

You should feel free to any properties of the derivative that you know.

7.2 Uniform convergence, continuity, and differentiation

Exercise 7.7. ( ) Prove Theorem 6.4. It might help to read the “scratch-work” section

right after the statement of the theorem.

Exercise 7.8. ( ) Prove Theorem 6.6. Hint: The full proof is actually very short,

but that doesn’t mean it’s easy to find.

7.3 Random problem

Exercise 7.9. ( ) Can you find an example of a single function f : R → R with the

following properties?

1. f is differentiable.

2. f ′(0) = 0.

3. limx→0 f
′(x) does not exist.

(I’m including this problem because it can be solved by adapting some ideas of one of

the counterexamples we saw.)

8 Day 4

8.1 Uniform convergence and continuity, the proof

Now we prove the uniform limit theorem (Theorem 6.4). Read the scratch-work following

the statement Theorem 6.4 for a motivation of the proof presented here.
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Proof. Let ε > 0 and let c ∈ A.

We will show g is continuous at c.

By uniform convergence there is aN such that for all n > N and all x ∈ A, |fn(x)−g(x)| <
ε/3.

Fix a single n > N . Since fn is continuous at c, there is a δ > 0 such that for all x, if

|x− c| < δ, then |fn(x)− fn(c)| < ε/3.

Suppose |x− c| < δ. By the triangle inequality,

|g(x)− g(c)| = |g(x)− fn(x) + fn(x)− fn(c) + fn(c)− g(c)| (8.1)

≤ |g(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− g(c)| (8.2)

<
ε

3
+
ε

3
+
ε

3
(8.3)

= ε (8.4)

Protip 8.1. This is an example of what is sometimes called a “ε/3-argument.” The idea is

this: Suppose you want to show a and b are close. But you can’t do this directly. So you

show a is close to c1, which is close to c2, which is close to..., which is close to cn, which is

close to b. Since being close is kind of transitive (not quite – the errors add up), it follows

that a is close to b.

In the example above, you’re comparing n+ 1 pairs of points. So this would result in an

“ε/(n+ 1)-argument.”

Fun fact 8.2. First let’s define uniform continuity. (See also Exercise 3.16).

A function f : A→ R is uniformly continuous if

∀ε > 0,∃δ > 0 s.t. ∀x ∈ A,∀c ∈ A, if |x− c| < δ then |f(x)− f(c)| < ε (8.5)

The difference between the definitions of continuity and uniform continuity is that the

“∀c ∈ A” gets moved to a later part of the statement (kind of like what happened with

pointwise convergence and uniform convergence.)

Do not confuse uniform continuity with uniform convergence. Uniform continuity is a

property of a single function. Uniform convergence is a property of a sequence of functions

(which don’t even have to be continuous).

The proof of Theorem 6.4 above can be easily adapted to show the following: If (fn)

is a sequence of uniformly continuous functions that converges uniformly to g, then g is

uniformly continuous. See Exercise 9.15.

25



8.2 Completeness of the real numbers

Often we care more about whether or not a sequence/series converges, and we care less about

what it actually converges to.

Definition 8.3. We say an converges, or limn→∞ an exists, if ∃L s.t. an → L.

But wait, how do you show something converges without knowing what it converges to?

For example, for a long time, mathematicians knew that
∑∞

n=1
1
n2 converged, but they

didn’t know what it converged to.

Fun fact 8.4. By the integral test (or the Cauchy condensation test, see Exercise 9.7), we

can conclude that
∑∞

n=1
1
n2 converges. The Basel problem asked if there is a nice expression

for this series. Euler solved the problem in 1734 by showing that
∑∞

n=1
1
n2 = π2

6
. (One way

to prove this is to use Fourier series.)

The similar looking expression
∑∞

n=1
1
n3 converges as well. The value is called Apéry’s

constant. Over 200 years after Euler solved the Basel problem, Apéry proved that
∑∞

n=1
1
n3

is irrational. We currently don’t know if there’s a nice expression for this constant.

This brings us to an important property of the real numbers, called the monotone con-

vergence theorem.

Theorem 8.5 (Monotone convergence theorem for real numbers). Suppose (an) is a sequence

of real numbers that is

1. monotone (a1 ≤ a2 ≤ a3 ≤ · · · or a1 ≥ a2 ≥ a3 ≥ · · · ), and

2. bounded (∃M s.t. ∀n, |an| ≤M)

Then an converges to some real number L.

Proof. Actually, let’s take this as an axiom. See the fun fact below for more.

Fun fact 8.6. If we had lived in some world where only rational numbers existed, then

everything we did would have worked fine. But this monotone convergence theorem is a

way to distinguish the rationals from the reals. The monotone convergence theorem is

not true for rationals! A bounded and monotone sequence of rational numbers does not

necessarily converge to some real number! For example if we take decimal approximations to√
2 (rounded down), we get the sequence 1, 1.4, 1.41, 1.414, . . .. This is a sequence of rational

numbers that is bounded and monotone but does not converge to a rational number!

A way to think about this is that the rationals are full of “holes.” which are filled in

when you add in the real numbers.
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Another way to talk about completeness of the reals is via Cauchy sequences. In fact, this

idea generalizes to other metric spaces (whereas the monotone convergence theorem is harder

to generalize). I wish I had time to talk about Cauchy sequences in the class. Unfortunately,

I don’t, so you’ll just have to refer to Exercise 5.6, Exercise 9.12, Exercise 9.13.

One very useful consequence of the monotone convergence theorem is that any series

which only has nonnegative terms and whose partial sums are bounded is convergent.

Theorem 8.7 (A test for series with nonnegative terms). Let an be a sequence of nonnegative

numbers. Let sn =
∑n

k=1 ak be the sequence of its partial sums. Then
∑
an converges if and

only if the sequence sn is bounded (i.e., there exists M such that for all n, sn ≤M).

Proof. Since an ≥ 0, the sequence of partial sums is nondecreasing (s1 ≤ s2 ≤ s3 ≤ · · · ). The

result follows from the monotone convergence theorem applied to the sequence (sn)n.

8.3 The only two series convergence tests you need

When John Conway taught my analysis class, he claimed that you only needed two con-

vergence tests: the comparison test and Dirichlet’s test. From my experience this is indeed

true. Most of the other tests for series convergence follow easily from one of these two. Well,

actually Theorem 8.7 helps too.

First up is the comparison test (sometimes called the “direct comparison test”).

Theorem 8.8 (Comparison test). Suppose (an) and (bn) are sequences with |an| ≤ bn, and

suppose that
∑
bn converges. Then

∑
an converges.

Proof. See Exercise 9.2.

Next up is Dirichlet’s test. (John Conway referred to this as the “damped oscillation

test.” You can think of the (bk)k as “oscillating” and the ak as “dampening.”) This one is

probably less familiar.

Theorem 8.9 (Dirichlet’s test). Let (an) and (bn) be sequences of numbers satisfying:

1. an is a positive and nonincreasing sequence, i.e. a1 ≥ a2 ≥ · · · .

2. limn→∞ an = 0.

3. There is a constant M such that for all n, |
∑n

k=1 bk| ≤M .

Then
∑
anbn converges.

Proof. See Exercise 9.4.

We won’t need Dirichlet’s test in this class, but I’ll point out that it contains the alter-

nating series test as a special case. (See Exercise 9.5.)
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8.4 Weierstrass M-test

The Weierstrass M -test is like the comparison test, but for series of functions. It is a way

to test if a series of functions is uniformly convergent.

Theorem 8.10 (Weierstrass M -test). Let (fn)n be a sequence of functions. Suppose that

there exists a sequence of numbers (Mn)n such that

1. For all n and all x, |fn(x)| ≤Mn

2.
∑
Mn converges

Then the series
∑
fn(x) converges uniformly.

Proof. We’ll prove this tomorrow, but you can try this as an exercise. Exercise 9.8.

9 Day 4 exercises

9.1 Convergence of sequences and series of numbers

Exercise 9.1. ( ) Give a counterexample to show that the following statement is false.

“Let an be a sequence of numbers. Let sn =
∑n

k=1 ak be the sequence of its partial sums.

Suppose that there exists M such that for all n, |sn| ≤M . Then
∑
an converges.”

This shows that the assumption of nonnegativity is very important in Theorem 8.7.

Exercise 9.2. ( ) Prove the comparison test (Theorem 8.8). Hint: The key observation

is that an + bn ≥ 0.

Exercise 9.3. ( ) We say that
∑
an is absolutely convergent if

∑
n |an| converges. Suppose

that
∑
an is absolutely convergent. Prove the following.)

1.
∑

n an converges (This shows that absolute convergence implies convergence.)

2. |
∑∞

n=1 an| ≤
∑∞

n=1 |an|. (This is known as the triangle inequality for infinite series.)

Exercise 9.4. ( ) This exercise will outline the proof of Dirichlet’s test of conver-

gence (Theorem 8.9):

1. Let Bn =
∑n

k=1 bk. Show that

n∑
k=1

akbk = anBn +
n−1∑
k=1

(ak − ak+1)Bk. (9.1)

This is called the summation by parts formula. It is a discrete analogue of the integra-

tion by parts formula. (Bn is the “integral” of bn, and an+1 − an is the “derivative” of

an.)
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2. Use summation by parts to prove Dirichlet’s test.

Exercise 9.5. ( ) Using Dirichlet’s test (Theorem 8.9), prove the alternating series test: If

cn is a positive, nondecreasing series, then
∑

(−1)ncn converges if and only if limn→∞ cn = 0.

Exercise 9.6. ( ) Prove the other comparison tests you learned in calculus (e.g. limit

comparison test, root test, ratio test, integral test). You should be able to do all of these

with the comparison test, Dirichlet’s test, or the test for series with nonnegative terms

(Theorem 8.7). (Hint: For many of these you probably should compare with geometric

series.)

Exercise 9.7. ( ) The Cauchy condensation test is perhaps less well-known to calculus

students. It can often be used in place of the integral test. Here is the statement: If (an)n

is a nonnegative and non-increasing sequence of of numbers (a0 ≥ a1 ≥ a2 ≥ · · · ≥ 0), then∑
an converges if and only if

∑
2na2n converges. Prove it.

(Hint: How can you prove the harmonic series
∑

1
n

diverges without using the integral

test?)

9.2 Convergence of sequences and series of functions

Exercise 9.8. ( ) Prove the Weierstrass M -test (Theorem 8.10).

Exercise 9.9. ( ) Prove that the series
∑∞

k=0 x
k converges uniformly on the closed interval

[−1
2
, 1
2
]. (Hint: Weierstrass M -test.)

Exercise 9.10. ( ) Show the series
∑∞

k=0 x
k does not converge uniformly on the open

interval (−1, 1). (Hint: compute the partial sums)

Exercise 9.11. ( ) For α > 0, define the function fα(x) =
∑∞

n=0 2−nα cos(2nx). Prove

that

1. If α > 0, then fα is continuous.

2. If α > 1, then fα is differentiable.

Hint: Use the Weierstrass M -test together with the results about uniform convergence (The-

orem 6.4 and Theorem 6.6).

Fun fact: When 0 < α ≤ 1, something weird happens. Look up “Weierstrass functions”

on Wikipedia for some pictures.

Another note: The functions 2−nα cos(2nx) that we’re summing up are waves. As n

increases, the amplitude decreases and the frequency increases, so this is very similar to the

situation described in Example 6.5. Except there, we didn’t sum up the functions.
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9.3 Completeness of the reals

This is kind of a side-topic. It’s not a focus of this class.

Exercise 9.12. ( ) Recall the definition of a Cauchy sequence given in (5.1).

Prove that a sequence (an)n of real numbers is convergent if and only if it is a Cauchy

sequence. (Note: One direction is Exercise 5.6. You only need to prove the other direction

here.)

Hint: Use the monotone convergence theorem (Theorem 8.5). The sequence (an)n may

not be monotone though. Can you find a way to construct a new sequence from (an)n which

is monotone?

Remark: You can also start with the statement that “convergent iff Cauchy” and use it

to deduce the monotone convergence theorem. So this statement works equally well as an

axiom of the real numbers, and some textbooks do things this way.

Exercise 9.13. ( ) Show that Exercise 9.12 is false if we replace R with Q.

Exercise 9.14. ( ) Recall that Q denotes the set of rational numbers. Define the function

f : Q→ R as follows.

f(x) =

0 if x ≤
√

2

1 otherwise
=

0 if x ≤ 0 or x2 ≤ 2

1 otherwise
(9.2)

Recall the definition of continuity in Definition 2.19. Prove that f is continuous. This shows

that the intermediate value theorem fails for Q.

9.4 Uniform continuity

We don’t need uniform continuity in this class, but this might be helpful for other analysis

classes. (See Fun fact 8.2 for a short discussion of uniform continuity.)

Exercise 9.15. ( ) Prove that if fn : A → R is a sequence of uniformly continuous

functions that converges uniformly to g, then g is uniformly continuous. Hint: Adapt the

proof of Theorem 6.4. If you understand the proof as well as the definitions of uniform

continuity and uniform convergence, it should not be too hard.

Exercise 9.16. ( ) Let [a, b] be a (closed and bounded) interval. Prove that if

f : [a, b] → R is continuous, then it is uniformly continuous. This is a special case of

something called the Heine–Cantor theorem.

Hint: This is one of those statements that is true for reals but not rationals. (Can you

find a counterexample for the rationals?) So you will need to use completeness of the reals

somewhere
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Another hint: There are several ways to approach this problem. Here is one possible

way:

1. First, a definition: Let S be a set of open intervals of R. (Each element of S is an open

interval (c, d). Note that S could be a finite set, a countable set, or an uncountable

set. There are no restrictions.) We say that “S covers [a, b]” if [a, b] ⊂
⋃

(c,d)∈S(c, d).

2. OK, this is the real first step: Prove that if S is a set of open intervals of R that covers

[a, b], then there is a finite subset S ′ ⊂ S such that S ′ still covers [a, b]. (Or you could

take this for granted and continue to the next step.)

3. Use the previous step to prove the desired result.

10 Day 5

10.1 Proof of Weierstrass M-test

First let’s give a solution to Exercise 5.11.

Theorem 10.1. If
∑∞

k=1 ak converges, then limn→∞
∑∞

k=n ak = 0.

Proof. Let sn =
∑n

k=1 ak. Let L = limn→∞ sn. Then L − sn =
∑∞

k=n+1 ak (this actually

requires proof). So

lim
n→∞

∞∑
k=n

ak = lim
n→∞

(L− sn−1) = L− lim
n→∞

sn−1 = L− L = 0. (10.1)

Now we prove the Weierstrass M -test (Theorem 8.10).

Proof of the Weierstrass M-test. First of all, if we fix x0 and apply the comparison test to

the sequence of numbers (fn(x0))n, then we see that
∑
fn(x0) converges. Hence,

∑
fn(x)

converges pointwise to some function g(x).

Now we need to show this convergence is uniform.

Let ε > 0.

Since
∑
Mn converges, by Theorem 10.1, there exists an N such that if n > N , then∑∞

k=nMk < ε.
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Then if n > N , we have ∣∣∣∣∣g(x)−
n∑
k=1

fk(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

fk(x)

∣∣∣∣∣ (10.2)

≤
∞∑

k=n+1

|fk(x)| (10.3)

≤
∞∑

k=n+1

Mk (10.4)

< ε (10.5)

10.2 Applications of the Weierstrass M-test

10.2.1 Power series

The Weierstrass M -test is extremely useful for power series.

Example 10.2. Consider the series f(x) =
∑∞

n=0
xn

n!
. (Let’s pretend we don’t already know

that this is the function ex.)

Let’s restrict to only x ∈ [−1
2
, 1
2
]. Then we have |xn

n!
| ≤ |xn| ≤ 1

2n
. So if we let Mn = 1

2n
,

then by the Weierstrass M -test (and the fact that
∑
Mn converges), it follows that the

series
∑∞

n=0
xn

n!
converges uniformly on [−1

2
, 1
2
]. In other words, the sequence of partial sums

sn(x) =
∑n

k=0
xk

k!
converges uniformly to f(x).

Since each individual term xn

n!
is continuous, the partial sums sn(x) are continuous, so by

the uniform limit theorem (Theorem 6.4), f is continuous on [−1
2
, 1
2
].

Furthermore, s′n(x) = sn−1(x), so by what we already showed above, the sequence s′n(x)

also converges uniformly to f . Therefore, Theorem 6.6, f is differentiable on [−1
2
, 1
2
] and

f ′ = f on that interval.

What happens outside of [−1
2
, 1
2
]? Actually, the series converges uniformly on any

bounded subset of R. You are asked to show this in Exercise 11.2.

(Ignore the following theorem if you’re not familiar with power series.)

Theorem 10.3. Let f(x) =
∑∞

n=0 anx
n. Let R be the radius of convergence of the power

series. Let r ∈ (0, R). Then the two power series
∑∞

n=0 anx
n and

∑∞
n=1 nanx

n−1 both

converge uniformly on [−r, r].

Proof. I’m not sure if I should assign this as an exercise. It requires some things we haven’t

covered in the class (such as the definition of radius of convergence). But I’ll point out that

this proof uses the Weierstrass M -test twice, once for each series.
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Corollary 10.4. Let f(x) =
∑∞

n=0 anx
n. Let R be the radius of convergence of the power

series. Then f is differentiable on (−R,R) and f ′(x) =
∑∞

n=1 nanx
n−1

Proof. Deducing this from Theorem 10.3 is an exercise.

10.2.2 Continuous but nowhere differentiable functions

The Weierstrass M -test can also be used to construct some very bad functions.

Theorem 10.5. For α > 0, define the function fα(x) =
∑∞

n=0 2−nα cos(2nx).

1. If α > 0, then fα is continuous.

2. If α > 1, then fα is differentiable.

Proof. This was Exercise 9.11.

Fun fact 10.6. The theorem does not say anything about the differentiability of f when

0 < α ≤ 1. It turns out that if 0 < α ≤ 1, then fα is actually not differentiable at any

point of R. Unfortunately, this is beyond the scope of this course. The proof that I know

uses some Fourier analysis. In any case, for 0 < α ≤ 1, the functions fα are functions that

are continuous but nowhere differentiable! These are known as Weierstrass functions. (Look

them up on Wikipedia to see some pictures.)

In general, constructing continuous but nowhere differentiable functions is hard. Exer-

cise 11.3 gives an example that is easier than the Weierstrass functions above, but it’s still

hard.

It turns out that if you want to just prove the existence of continuous but nowhere

differentiable functions, it’s much easier! You can use something called the Baire category

theorem. (See Ben’s Week 3 class.)

10.3 Rearranging terms in a series

Definition 10.7. We say that
∑
an is absolutely convergent if

∑
n |an| converges.

By Exercise 9.3, if a series is absolutely convergent, then it is convergent. But the converse

is not true. For example,
∑∞

n=1
(−1)n+1

n
converges (by the alternating series test), but

∑∞
n=1

1
n

diverges. We say that
∑ (−1)n+1

n
is “conditionally convergent.” (definition below)

Definition 10.8. We say that
∑
an is absolutely convergent if

∑
n an converges but

∑
n |an|

does not.
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10.3.1 Conditionally convergent series

Now we can get to a theorem, which tells us that conditionally convergent series are very

crazy and we have to be careful with them.

Theorem 10.9 (Riemann’s rearrangement theorem). Let
∑
an be a conditionally convergent

series. Then for all L ∈ R, it is possible to rearrange the terms into a new series which

converges to L.

Proof. (This proof makes much more sense with a picture.)

Let’s give a proof for just the alternating harmonic series:
∑ (−1)n+1

n
. If you inspect the

proof, you see that it can be generalized to all conditionally convergent series.

From an = (−1)n+1

n
, we’re going to split this into two sequences.

1. The positive terms: Let pn = 1
2n−1

2. The negative terms: Let qn = − 1
2n

.

Note that both pn → 0 and qn → 0, but both
∑
pn and

∑
qn diverge.

Fix L ∈ R. Now I’m going to describe an algorithm to rearrange an into a new sequence

bn such that
∑∞

n=1 = L. For simplicity, let’s consider just L > 0. (We can modify this

argument so it works for L ≤ 0.

The idea is to add terms to the sequence (bn)n one by one, and keep track of the partial

sums. At the start we don’t have any terms in the sequence.

• Step 1: Take terms from the positive sequence (pn)n and keep adding them into the

sequence (bn)n until the sum of the all numbers added to (bn)n is greater than L. This

is possible because
∑∞

n=1 pn = ∞. Stop doing this as soon as the sum is greater than

L. So right now, the sequence (bn) that we’re building looks like:

p1, p2, . . . , pN1 (10.6)

where

N1−1∑
k=1

pk ≤ L (10.7)

N1∑
k=1

pk > L. (10.8)

• Step 2: Take terms from the negative sequence (qn)n and keep adding them into the

sequence (bn)n until the sum of the all numbers in (bn)n is less than L. This is possible
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because
∑∞

n=1 qn = −∞. Stop doing this as soon as the sum is less than L. Right now,

the sequence (bn) we’re building looks like

p1, p2, . . . , pN1 , q1, q2, . . . , qM1 (10.9)

where

N1∑
k=1

pk +

M1−1∑
k=1

qk ≥ L (10.10)

N1∑
k=1

pk +

M1∑
k=1

qk < L. (10.11)

• Step 3: Go back to the positive sequence pn. Starting at n = N1 + 1 (where we

left off), take terms from the positive sequence (pn)n, and keep adding them into the

sequence (bn)n until the sum of the all numbers added to (bn)n is greater than L. This

is possible because
∑∞

n=N1+1 pn = ∞. Stop doing this as soon as the sum is greater

than L. So right now, the sequence (bn) that we’re building looks like:

p1, p2, . . . , pN1 , q1, q2, . . . , qM1 , pN1+1, pN1+2, . . . , pN2 (10.12)

where

N1∑
k=1

pk +

M1∑
k=1

qk +

N2−1∑
k=N1+1

pk ≤ L (10.13)

N1∑
k=1

pk +

M1∑
k=1

qk +

N2∑
k=N1+1

pk > L (10.14)

• Step 4, 5, 6, . . . : Continue in the same way

Now we need to show that
∑∞

k=1 bk = L. (For the discussion that follows, it helps to

draw a picture.)

First, consider what happens after Step 1. Our rearranged sequence so far is p1, p2, . . . , pN1 .

Let S = p1 + · · · + pN1 be the total sum so far. We know that P is greater than L (thanks

to (10.8)), but not by much (thanks to (10.7)). in particular S ≤ L+ pN1 .

Now a crucial observation: After this point in the sequence, the sum is never greater than

L+pN1. This is because the sequence (pn)n is a nonnegative sequence that decreases to zero.

Next, consider what happens after Step 3. (We’re skipping Step 2 for now). Our sequence

is now (10.12). Let S be the total sum. By the same reasoning as before S ≤ L + pN2 .

Furthermore, after this point in the sequence, the sum is never greater than L+ pN2 .

The same reasoning works for Steps 5, 7, 9, . . . .
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Now let’s move to the even steps, where we add in negative numbers to our sequence.

Consider what happens after Step 2, where our sequence is now (10.12). If S denotes the

total sum, then S ≥ L− |qM1|.
The same reasoning works for Steps 4, 6, 8, . . . .

Since (pn) and (|qn|) are both positive sequences that decrease to zero, it follows that the

partial sums approach L (by the squeeze theorem).

10.3.2 Absolutely convergent series

The previous section showed why conditionally convergent series are scary. They’re like wild

animals. This section shows absolutely convergent series are much better.

Here is one way that absolutely convergent series are nicer. The following is true for all

convergent series
∑
an (not just absolutely convergent ones):

∀ε > 0,∃N s.t. ∀n > N,

∣∣∣∣∣
∞∑
k=n

ak

∣∣∣∣∣ < ε (10.15)

(The statement above is Exercise 5.11.) However, the following is only true for absolutely

convergent series:

∀ε > 0, ∃N s.t. ∀ subsets S ⊂ {n : n > N},

∣∣∣∣∣
∞∑
k∈S

ak

∣∣∣∣∣ < ε (10.16)

We can intuitively think of (10.15) as saying that for a convergent series, the “tails” are

small. On the other hand (10.16) says that for absolutely convergent series, not only are

the tails small, but any subset of the tails are small as well. This is false for conditionally

convergent series! (Think about
∑ (−1)n+1

n
to see why.)

Theorem 10.10. If (an) converges absolutely, and (bn) is any rearrangement of (an), then∑
bn converges absolutely, and

∞∑
n=1

an =
∞∑
n=1

bn. (10.17)

Proof. Let sn =
∑n

k=1 an and tn =
∑n

k=1 bn. Let S =
∑n

k=1 an. We’re going to show tn → S.

That is, we’ll show ∀ε > 0, ∃N s.t. ∀n > N, |tn − S| < ε.

Suppose ε > 0. (Keep in mind that our goal is to now find an N .)

Since
∑
an converges absolutely, there is a K > 0 such that

∑∞
n=K+1 |an| < ε/2. Note

that this implies |sK − S| < ε/2 as well.

ChooseN so large that the finite sequence b1, b2, . . . , bN contains all the terms a1, a2, . . . , aK .

We claim that this N works, i.e., in what follows we’ll show ∀n > N, |tn − S| < ε.
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Suppose n > N . Then as mentioned above, all the terms in the partial sum sK are

contained in the terms of the partial sum tn. Thus tn − sK is a finite sum of some of the ai,

where we know for sure that a1, . . . , aK are not present. (Here we are rearranging terms in

tn−sK , which is fine, since tn and sK are both finite sums.) Thus, by the triangle inequality,

|tn − sK | ≤
∞∑

k=K+1

|ak| <
ε

2
(10.18)

By the triangle inequality again,

|tn − S| ≤ |tn − sK |+ |sK − S| <
ε

2
+
ε

2
= ε. (10.19)

This completes the proof.

11 Day 5 exercises

The class is over. But feel free to ask me questions about any of the following or previous

exercises at any time during Mathcamp. And feel free to ask any questions about this class or

about math in general! A good book for all this material, and for learning more, is Spivak’s

Calculus (not to be confused with his Calculus on manifolds).

11.1 Power series

Exercise 11.1. ( ) Prove Corollary 10.4. Be a little careful. There are some subtle

technical details.

Exercise 11.2. ( ) Define f(x) =
∑∞

k=0
xk

k!
. (Yes, this is the exponential function. But

don’t use that fact in this problem. That would be cheating!)

• Show that f is continuous on R. (Hint: Don’t consider f on all of R at once. Instead,

temporarily fix some R > 0 and only consider the interval [−R,R].)

• Show that f is differentiable on R and that f ′ = f .

11.2 Continuous but nowhere differentiable functions

Exercise 11.3. ( ) For x ∈ R, let g(x) the distance from x to the nearest integer.

Prove that the function

f(x) =
∞∑
n=1

g(10nx)

10n
(11.1)

defines a function that is continuous everywhere but differentiable nowhere.
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11.3 Rearranging series

Exercise 11.4. ( ) Let
∑
an be a conditionally convergent series. Show that you can

rearrange the terms into a new series such that
∑∞

n=1 bn =∞.

12 [Note to self] Changes for future iterations

1. Exercise for Day 1: Let a, b ∈ R. Suppose that ∀ε > 0, |a− b| < ε. Prove that a = b.

2. Exercise for Day 1: Suppose f(x) ≤ g(x) and limx→c f(x) = L and limx→c g(x) = M .

Prove that L ≤M .
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