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1 Introduction

1.1 Course blurb

Let’s go through the three topics in the course title.

1. The Kakeya needle problem asks the following question: Suppose you have a unit line

segment (a “needle”) in the plane and you’d like to rotate it 180 degrees, so that it

points in the opposite direction. What is the area of the smallest region you can do

this in? This problem can be solved with elementary geometric techniques, and the

answer may not be what you expect!
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2. The real projective plane is like the Euclidean plane, except parallel lines intersect at

“points at infinity.” In this space, there is a magic trick. If you wave your wand and

say the magic words (“point-line duality”), then all the points will transform into lines

and vice versa. Furthermore, any theorem about points and lines that was true will

still remain true!

3. We can generalize the notion of “dimension” to talk about s-dimensional sets for any

nonnegative real number s. This allows us to better understand sets such as frac-

tals. For example, the Koch snowflake (look it up!) has infinite length and zero area,

and turns out to be neither 1-dimensional nor 2-dimensional. It is actually log3 4-

dimensional!

For the first few days, we will discuss these three topics independently of each other. Then

we will see the surprising connections they have to each other, as well as to the Kakeya

conjecture, a famous unsolved problem in analysis.

2 Day 1: The Kakeya needle problem

2.1 The Kakeya needle problem

Videos for fun:

• Numberphile: https://www.youtube.com/watch?v=j-dce6QmVAQ

• Mathologer: https://www.youtube.com/watch?v=IM-n9c-ARHU

(The comments on the Mathologer video seem to be more favorable than the ones on the

Numberphile video.)

Kakeya needle problem: Suppose you have a unit line segment, and you want to rotate

it 180 degrees in the plane in as small area as possible. How would you do this?

Here are some possibilities:

1. Rotate the needle about its center. You get a circle of radius 1/2:

2. Do the entire rotation inside an equilateral triangle of height 1. Rotate the needle at

one of its endpoints from one side of the triangle to another, and then translate along

the side of the triangle.

3. Do a “three-point turn,” like how you might make a U-turn. The resulting shape is

called a deltoid (not to be confused with the muscle). It is like a triangle but with

curved sides.
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You can check by calculating the areas that the deltoid is better than the triangle is

better than the circle. Calculating the area of a deltoid seems complicated... but it’s not

needed, because it’s not optimal.

Theorem 2.1 (Answer to the Kakeya needle problem). For any ε > 0, there is a way to

rotate a unit line segment 180 degrees in area less than ε.

(Historical note: This was proved by Besicovitch in 1919.)

Another way to state Theorem 2.1 is that “a unit line segment can be rotated 180 degrees

in arbitrarily small area.” (In general, when we say a quantity is “arbitrarily small,” we mean

that for all ε > 0, there is a way to make that quantity less than epsilon.)

The rest of today will be to prove Theorem 2.1. The key idea (keep this in mind as you

read the following sections) will be to cut the triangle into smaller triangles and translate

the triangles so they overlap a lot.

First some reductions. It is clearly enough to prove the following

Theorem 2.2. For any ε > 0, there is a way to rotate a unit line segment 60 degrees in

area less than ε.

2.2 Translations are almost “free”

If our line segment is horizontal, then we can easily translate it horizontally while covering

zero area. This is because a line has zero area.

What is less trivial, is that we can translate it in other directions while covering arbitrarily

small area.

Theorem 2.3 (Pál join). Suppose we want to translate a line segment from one position to

another. Then for any ε, we can do this translation in area less than ε.

Proof. Take the initial and final positions of the needle and extend them into lines. We now

have two parallel lines. From the initial position, rotate the needle slightly. This covers some

area. Now translate the needle until it hits the other parallel line. This covers zero area.

Then rotate the needle so it lies inside the line, and then translate it to its final position.

The trick used in Theorem 2.3 is called a “Pál join.” It allows us to ignore translations

and “teleport” the line segment for “free” as long as we do not rotate it in the process.

2.3 Sliding 2 triangles

Let 4ABC be any triangle. Let its area be denoted [4ABC]. We can draw the median

from vertex C to base AB to divide the triangle into two triangles (of equal area). Now we

can “slide” the two pieces towards each other so that they overlap.
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Figure 1: Sliding 2 triangles

The union of the two overlapping triangles is a complicated figure, but notice that there

is a triangle that is similar to4ABC. Let’s call this the “heart.” There are also two (pointy)

triangles sticking out of the heart. Let’s call these the “arms.” See Figure 1.

The more we translate, the smaller the heart gets, and the larger the arms get. Suppose

0 < s < 1 is the similarity ratio between the the heart and 4ABC. (That is, it is the ratio

of lengths of the corresponding sides.) Then the area of the heart is s2[4ABC].

Also, by elementary geometry, the total area of the two arms is 2(1− s)2[4ABC]. One

way to see this is to first consider the top half of the two arms. We can combine them

together to form a triangle that is similar to 4ABC, with similarity ratio 1− s. Thus, the

total area of the top half of the two arms is (1− s)2[4ABC]. The bottom half has the same

area as the top half.

Here is a summary of what we have shown so far.

Theorem 2.4 (Basic step). Let 0 < s < 1. Let 4ABC be any triangle. By doing the process

above, we can obtain a figure whose with one heart and two arms. The heart is similar to

4ABC, with similarity ratio s. Furthermore,

area of heart = s2 · (area of 4ABC) (2.1)

total area of arms = 2 · (1− s)2 · (area of 4ABC). (2.2)

2.4 Sliding 4 triangles

Now we’re going to iterate this. In the words of Elias Stein, “we will use this process to

generate our monster, which will have a tiny heart and many arms.” (It is also called a

“Perron tree.”)

Let’s first see how to do this with 4 triangles. Start with a triangle 4ABC, and a

similarity ratio 0 < s < 1.

Divide the base AB into 4 segments of equal lengths, and group the 4 triangles into 2

pairs. (Steps 1 and 2 of Figure 2.) Now for each pair, do the basic construction, so for each
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Figure 2: Sliding 4 triangles

(a) (b)

Figure 3: Stage 1 arms in blue. Stage 2 arms in green.

pair, make them overlap, so they have a heart (with similarity ratio s) as well as two arms.

We will call these stage 1 hearts and stage 1 arms. (Step 3 of Figure 2.) We call these two

figures “stage 1 monsters.”

At this point, note that the 2 stage 1 hearts fit together, and could be combined to create

a triangle similar to 4ABC with ratio s. But we’re not going to combine them. Instead, we

6



repeat the basic process and overlap the two hearts. From the two hearts, we create a single

new heart (“stage 2 heart”) and two new arms (“stage 2 arms”). (Step 4 of Figure 2.)

This is the end. Our final figure (a “stage 2 monster”) consists of a stage 2 heart, 4 stage

1 arms, and 2 stage 2 arms. See Figure 3.

The total area of the stage 1 arms is 2 · (1− s)2[4ABC], which is the same as the RHS

of (2.2). The argument is very similar to the case of the two triangles in Section 2.3.

Theorem 2.5 (Sliding 4 triangles). Let 0 < s < 1. Let 4ABC be any triangle. By doing

the process above, we can obtain a figure whose with a stage 2 heart, 4 stage 1 arms, and 2

stage 2 arms. The stage 2 heart is similar to 4ABC, with similarity ratio s2. Furthermore,

area of stage 2 heart = s4 · (area of 4ABC) (2.3)

total area of stage 1 arms = 2 · (1− s)2 · (area of 4ABC) (2.4)

total area of stage 2 arms = 2 · s2 · (1− s)2 · (area of 4ABC). (2.5)

(Here we’re adding up the area of the each individual arm. The arms may overlap, so the

total region covered by the arms may have smaller area.)

2.5 Sliding 2n triangles

In general, we can start with any triangle 4ABC, a similarity ratio s, and a natural num-

ber n. We’re going to divide the triangle into 2n parts. (So the process described above

corresponded to n = 2.)

First we group the 2n triangles into 2n−1 pairs. We translate these to form stage 1

monsters, consisting of stage 1 hearts and stage 1 arms. Now we pair up stage 1 monsters.

We combine two stage 1 monsters to form a stage 2 monster, and so on.

Theorem 2.6 (Sliding 2n triangles). Let 0 < s < 1. Let 4ABC be any triangle. By doing

the process above, we can obtain a figure whose with a stage n heart and for k = 1, . . . , n, it

has 2n−k+1 stage k arms. The stage n heart is similar to 4ABC, with similarity ratio sn.

Furthermore,

area of stage n heart = s2n · (area of 4ABC) (2.6)

total area of stage k arms = 2 · s2(k−1) · (1− s)2 · (area of 4ABC) (2.7)

(Here we’re adding up the area of the each individual arm. The arms may overlap, so the

total region covered by the arms may have smaller area.)
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By the geometric series formula, it follows that

area of stage n monster

area of 4ABC
≤ s2n +

n∑
k=1

2 · s2(k−1) · (1− s)2 (2.8)

≤ s2n +
∞∑
k=1

2 · s2(k−1) · (1− s)2 (2.9)

= s2n + 2 · 1

1− s2
· (1− s)2 (2.10)

= s2n + 2 · 1− s
1 + s

(2.11)

≤ s2n + 2(1− s) (2.12)

2.6 The conclusion of the proof

Now we are ready to prove Theorem 2.2. We want to show that we can rotate a needle 60

degrees in arbitrarily small area.

The idea is that if ε > 0 is given, we can choose the parameters s and n so that s2n +

2(1− s) < ε/2. Then we can add Pál joins so that the total area of the Pál joins is < ε/2.

The following explains this in slightly more detail.

Let ε > 0 be given. First choose the similarity ratio s very close to 1, so that 2(1− s) ≤
ε/4. Then choose n very large, so that s2n ≤ ε/4. Now do the construction described above

with s and n and an equilateral triangle 4ABC of height 1. It follows that the resulting

monster we get has area

≤ (s2n + 2(1− s))[4ABC] ≤ (
ε

4
+
ε

4
) · 1 =

ε

2
. (2.13)

Now use Pál joins to connect the parallel line segments together. We can make the Pál joins

so that the total area added is ≤ ε/2. Thus, our region has area ≤ ε, which completes the

proof.

This concludes our solution to the Kakeya needle problem.

3 Day 1 exercises

Exercise 3.1. ( ) Not really an “exercise” but this is important. Go through the argument

on your own and make sure you understand all the steps! One good way to see if you

understand the argument is if you can write out all the steps yourself.

Exercise 3.2. ( ) Let’s study the Kakeya needle problem in three dimensions. For any

ε > 0 show that there exists a set K ⊂ R3 with volume ≤ ε, and with the following property:
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For any initial and final directions, it is possible to start with the needle inside K pointing in

the initial direction, and move it, completely within K, so that it points in the final direction.

(The orientation of the needle is all that matters. The actual position is not important.)

4 Day 2: Projective geometry

References: Jürgen Richter–Gebert, Perspectives on Projective Geometry

Projective geometry is useful in computer vision and computer graphics, drawing (perp-

sectives, vanishing geometry), algebraic geometry.

Later we’ll be able to use projective geometry to give us a better understanding the

sliding triangles construction from Day 1.

Basic idea:

1. R2 is the Euclidean plane or “affine plane.”

2. P2 is the projective plane. It consists of R2 together with “points at infinity,” where

parallel lines of R2 intersect.

Note: We call P2 the “real projective plane,” or just “projective plane” for short. Some-

times this is denoted RP2 or P2(R) to emphasize the “real” part, and to distinguish it from

other kinds of projective planes. We will not use other kinds of projective planes, but see ??

if you are interested.

4.1 Point-line duality in the Euclidean plane

We’re going to do something very weird with notation. We’ll denote points in R2 by p(a, b),

where “p” stands for “point.” Normally this point would simply be denoted (a, b) without

the “p.”

We will also have the following notation for lines in R2:

`(a, b) = {p(x, y) : ax+ by + 1 = 0}. (4.1)

Figure 4 shows the geometric relationship between p(a, b) and `(a, b). We say that p(a, b)

and `(a, b) are dual to each other.

Note the symmetry between (a, b) and (x, y) in the equation ax + by + 1. This implies

that

p(x, y) ∈ `(a, b) ⇐⇒ `(x, y) 3 p(a, b) (4.2)

This suggests that there is a symmetry between the roles played by points and lines in R2.
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Figure 4: The geometric relationship between p(a, b) and `(a, b)

For example, (4.2) implies that

two lines `(a, b) and `(c, d) intersect at p(x, y)

⇐⇒ (4.3)

the line going through the two points p(a, b) and p(c, d) is `(x, y).

(There are some issues with (4.3) which we will come back to later.)

If p(x, y) ∈ `(a, b), we say that p(x, y) and `(a, b) are incident to each other.

Suppose we have theorem about points and lines in the plane that only deals with inci-

dences between points and lines, i.e., no reference to lengths, angles, etc. Then we can form

a dual theorem by interchanging points and lines. (Actually, certain ratios of lengths are

allowed. These are called cross ratios. We will not need them.)

For example, collinearity is a property that can be stated in terms of incidences: Three

points are collinear if there is a line that all three points are incident to. The dual notion is

concurrency. Three lines are concurrent if there is a point that all three lines are incident

to.

Pappus’s theorem is the following theorem about collinear points.

Theorem 4.1 (Pappus’s theorem). (Note: This theorem is not stated with the p(a, b), `(a, b)

notation.) Suppose that points A,B,C are collinear, and that points A′, B′, C ′ are collinear.

Let X be the intersection of AB’ and A’B, and define Y and Z similarly. (See Figure 5a.)

Then the points X, Y, Z are collinear.

By dualizing Pappus’s theorem, we get the following theorem about concurrent lines.

Theorem 4.2 (Dual of Pappus’s theorem). (Note: This theorem is not stated with the p(a, b),

`(a, b) notation.) Suppose that lines A,B,C are concurrent, and that points A′, B′, C ′ are

collinear. Let X be the line through of A ∩ B′ and A′ ∩ B, and define Y and Z similarly.

(See Figure 5b.) Then the lines X, Y, Z are concurrent.
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(a) Pappus’s theorem (b) Dual of Pappus’s theorem

Figure 5

There is are some issues with the duality between points and lines we described so far.

1. We would like this duality to be a bijection:

{points in R2} ←→ {lines in R2} (4.4)

However, there is no way to represent lines through the origin in the form `(a, b).

2. Consider again the statement (4.3). Observe that the lines `(a, b) and `(c, d) are parallel

if and only if line through the points p(a, b) and p(c, d) also passes through the origin.

In this case, the point p(x, y) in the first half of (4.3) does not exist, and there is no

way to represent the line in the second half of (4.3).

3. p(0, 0) makes perfect sense. It is the origin. But its dual `(0, 0) makes no sense. (Recall

(4.1).)

To fix these kinds of issues, we need to add more points to R2.

4.2 The real projective plane P2

Consider the following dual statements.

1. For any two points in R2, there exists a line which is incident to both. (True!)

2. For any two lines in R2, there exists a point which is incident to both. (False! Parallel

lines don’t intersect.)

We are going to define a new space, called the real projective plane and denoted P2, which

is better for duality, in that the following are true:
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1. For any two points in P2, there exists a line which is incident to both.

2. For any two lines in P2, there exists a point which is incident to both.

(Note that some other texts may use notation like RP2 or P2
R to emphasize that it is the real

projective plane. There are other projective planes.)

To define P2, we use R2 as a starting point.

1. Points in P2: The points in P2 are the points in R2, plus some additional points, called

points at infinity.

2. Lines in P2: For every line in R2, add a single point at infinity to it. Do this in a way so

that any two parallel lines have the same point at infinity, while any two non-parallel

lines have different points at infinity.

These lines are lines in P2. Also, P2 has an additional line, called the line at infinity,

which is the set of all points at infinity.

So there are many points at infinity. Each line of R2, gains an additional point at infinity.

Which infinite point it gains depends on its slope (or direction) in R2.

We can see the following are indeed true.

1. For any two points in P2, there exists a line which is incident to both.

2. For any two lines in P2, there exists a point which is incident to both.

4.3 Homogeneous coordinates for P2

Here is one way to denote points in P2. We start with three real numbers, and write them

with brackets and colons: p[x : y : z] denotes a point in P2.

It seems like we just defined R3, not P2. So we make the following rules.

1. We do not allow x, y, z to be zero all at the same time

2. We say that p[x : y : z] = p[x′ : y′ : z′] if there exists a λ 6= 0 such that (x, y, z) =

λ(x′, y′, z′).

The second rule is why these are called homogeneous coordinates.

A line in P2 in homogeneous coordinates is

`[a : b : c] = {p[x : y : z] ∈ P2 : ax+ by + cz = 0}. (4.5)

Observations:
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1. If z 6= 0, then we can always rescale to make the third coordinate 1: p[x : y : z] = p[x
z

:
y
z

: 1]. We identify p[x : y : 1] with the point in the Euclidean plane p(x, y). That is,

we have a bijection

R2 → {p[x : y : z] ∈ P2 : z 6= 0}
p(x, y) 7→ p[x : y : 1]

(4.6)

So, there’s no harm in thinking of R2 as a subset of P2, which we will do. We sometimes

refer to R2 as the “affine plane,” to distinguish it from the “projective plane.”

2. The remaining points P2 \ R2 are the points at infinity. Any point in P2 \ R2 is of the

form p[x : y : 0]. Recall that a point at infinity corresponds to a direction or slope.

We can think of p[x : y : 0] as the direction of the vector (x, y), or as the slope y/x. In

other words, every line in R2 with slope y/x also contains the point p[x : y : 0].

Here’s another way to see this: For z 6= 0, p[x : y : z] corresponds to the affine point

p(x
z
, y
z
). If we keep x and y fixed and send z → 0, then the point p(x

z
, y
z
) moves to

infinity in the direction of the vector (x, y).

3. `[a : b : c] really is a line. The equation ax+ by + cz = 0 might look like the equation

for a plane, but recall that we’re using homogeneous coordinates. In fact,

`[a : b : c] ∩ R2 = {p(x, y) : ax+ by + c = 0} (4.7)

4. If you pick a, b, c in a certain way (Exercise 5.3), you get the line at infinity.

Example 4.3. Consider the lines `([2 : 1 : 0]) and `([2 : 1 : 1]) in P2. We have

`([2 : 1 : 0]) = {p[x : y : z] ∈ P2 : 2x+ y = 0} (4.8)

`([2 : 1 : 1]) = {p[x : y : z] ∈ P2 : 2x+ y + z = 0}. (4.9)

To consider the affine part of these two lines, set z = 1:

`([2 : 1 : 0]) ∩ R2 = {p(x, y) ∈ R2 : 2x+ y = 0} (4.10)

`([2 : 1 : 1]) ∩ R2 = {p(x, y) ∈ R2 : 2x+ y + 1 = 0}. (4.11)

so these are two parallel lines with slope −2.

Note that both lines also contain the point at infinity p[1 : −2 : 0]. This is where the two

lines intersect in P2.
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4.4 The projective sphere

(We didn’t cover this section. It’s not needed for the remaining classes.)

Here is another way to think about P2. Given any point p[x : y : z] ∈ P2, we can assume

WLOG that x2 + y2 + z2 = 1, i.e., the point (x, y, z) (as a point in R3 lies in the unit sphere

S2. But there are two ways to do this, because p[x : y : z] = p[−x : −y : −z]. These two

points are antipodal, meaning they are diametrically opposite of each other on the sphere.

A line `[a : b : c] is the set of points with ax+ by+ cz = 0, which in R3 is a plane though

the origin. It intersects S2 in a great circle.

So we can think of P2 in the following way:

1. A point of P2 is a pair of antipodal points on S2.

2. A line of P2 is a great circle on S2.

The nice thing about using the sphere to understand P2 is that is very symmetric. There

is no need to talk about points at infinity.

The equator of the sphere {z = 0} ∩ S2 is the line at infinity. If we remove the equator,

we can project the remaining points to the plane {z = 1} ⊂ R3 via gnomonic projection.

This is how the upper hemisphere is like R2. And the lower hemisphere as well.

The dual of p[x : y : z] is the intersection of S2 with the plane that is orthogonal to the

vector (x, y, z).

4.5 Projections

Given a set of points E ⊂ P2, we can define the projection of E from a point p0 ∈ P2 to be

the set of lines through p0 that intersect E. (Normally, people talk about projection from a

point onto a line, but we do not need the “onto a line” part.) See the left halves of Figure 6a

and Figure 6b for some examples.

For E ⊂ P2, define

`(E) = {`[a : b : c] : p[a : b : c] ∈ E} (4.12)

It turns out that the dual notion of projection of E from p0 is the intersection of `(E) with

the line l0, where `0, is `0 is the dual of p0. See the right halves of Figure 6a and Figure 6b.

Informal discussion: Suppose we’re trying to show that the union of the lines in `(E)

covers very small area. For example, maybe we are interested in Besicovitch sets. Having

small area means “most” lines should intersect `(E) in a “small” set. But by dualizing, this

means that the projections of E from “most” points is “small.” So keep this in mind: for a

set of lines to cover small area, its dual (a set of points) should have small projections.
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(a)

(b)

Figure 6: In both figures, the point p0 is dual to `0. The green lines on the left are dual to

the green points on the right. (The objects `(E) and `0 are not accurately depicted.)

4.6 For the rest of the week

Projective geometry is a very interesting subject, with many applications. Since we’re fo-

cusing on applications to the Kakeya problem, here are the important things for the rest of

the week.

1. We are only going to apply point-line duality in R2. But it will be very useful to

have some intuitive understanding of points at infinity. We won’t need homogeneous

coordinates.

2. In Section 4.5, we saw that “the projection from a point” dualizes to “the intersection

with a line.” This will be very important.

5 Day 2 exercises

Exercise 5.1. ( ) Using the geometric relationship between p(a, b) and `(a, b) (i.e., Fig-

ure 4), give a geometric proof of (4.2).

15



Exercise 5.2. ( ) What values of a, b, c make `[a : b : c] equal to the line at infinity?

Exercise 5.3. ( ) Let p0 be a point at infinity. What is the line dual p0? Describe it

geometrically, and compare it with Figure 4.

Exercise 5.4. ( ) (Some linear algebra would help for this problem.)

We can use 3× 3 matrices to describe some transformations on P2. For example consider

the matrix

A =

2 0 0

0 2 0

0 0 1

 (5.1)

and note that 2 0 0

0 2 0

0 0 1


xy
z

 =

2x

2y

z

 (5.2)

So A can be viewed as a function P2 → P2 given by p[x : y : z] 7→ p[2x : 2y : z]. By setting

z = 1, we see that the effect on the Euclidean plane is dilation by 2 with respect to the

origin. (Also, the points at infinity don’t move.)

Here are some geometric transformations R2 → R2 that can be represented by 3 × 3

matrices.

1. Can you find a matrix that represents translation by vector (a, b)? (Note that trans-

lation in R2 is not a linear transformation. So it cannot be represented by a 2 × 2

matrix.)

2. Can you find a matrix that represents rotation by angle θ around the point (a, b)?

3. Can you find two matrices that represent the same transformation R2 → R2?

Exercise 5.5. ( ) Any invertible 3 × 3 matrix defines a map P2 → P2. Such maps

are called “projective transformations.” Note that differen matrices can correspond to the

same projective transformation. Which matrix group is isomorphic to the group of projective

transformations?

Exercise 5.6. ( ) We can define the n-dimensional projective space over any field F,

denoted Pn(F), as follows: Start with Fn+1 \ {0}. Write the elements in the form [x1 : · · · :
xn+1]. And add the rule that

[x1 : · · · : xn+1] = [y1 : · · · : yn+1] if ∃λ 6= 0 such that (x1, . . . , xn+1) = λ(y1, . . . , yn+1).

(5.3)

Note that what we did in Section 4.3 corresponds to n = 2 and F = R.
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1. We know R2 and C are the same as topological spaces. (By “same” I mean homeo-

morphic.) Are P2(R) and P1(C) the same?

2. Let Fq be the finite field with q elements. How many points does Pn(Fq) have?

6 Day 3: Dimensions of fractals

6.1 Motivating examples

Before we introduce the notions of box dimension and Hausdorff dimension, let’s provide

some motivating examples. (This section is not rigorous.)

1. If you have a line segment, you can split it into two equal parts. Then you get 2 copies

of the original line segment, rescaled by 1/2.

2. If you have a square, you can split it to get 4 copies of the original square rescaled by

1/2.

3. If you have a cube, you can split it to get 8 copies of the original cube rescaled by 1/2.

4. (If you have a point, you get 1 copy of the original point rescaled by 1/2.)

From these four examples we should “expect” the following to hold for the dimension of

a set: If you have a self-similar set E ⊂ Rn, and you can split it to get m copies of E, all

rescaled by r ∈ (0, 1), then the dimension of E should satisfy m = (1/r)dimension of E, i.e.,

dimension of E =
logm

log(1/r)
= log1/rm (6.1)

(In Section 6.8, we’ll see that this usually holds.) Let’s apply this to analyze some fractals.

1. Consider the Sierpiński triangle. You can split it into m = 3 copies, all of which are

rescaled by r = 1/3. So the dimension is log2 3.

2. Consider the Koch snowflake curve. (Here I don’t mean the inside of the snowflake.

What I have There are 4 copies rescaled by 1/3. So dimension log3 4.

3. Middle thirds Cantor set. There are 2 copies rescaled by 1/3. So dimension log2 3.

This kind of argument is nice, but it only works with self-similar sets. We will try to

introduce something that works for all sets.
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6.2 Box dimension

For a set E ⊂ Rn and δ > 0, let Nδ(E) be the minimal number of axis-parallel cubes (i.e.

“boxes”) of side-length δ needed to cover the set.

1. If E is a point, then Nδ(E) = 1.

2. If E is a unit line segment, then Nδ(E) = d1
δ
e ≈ 1

δ
.

3. If E is a unit square, then Nδ(E) = d1
δ
e2 ≈ 1

δ2
.

The box dimension (or box-counting dimension or Minkowski dimension) of E (denoted

dimB E) is, roughly speaking, the exponent of 1/δ in Nδ(E). More precisely,

dimB E = lim
δ→0

logNδ(E)

log(1/δ)
(6.2)

With this definition, we see that a point, unit line segment, and unit square have box

dimensions 0, 1, 2, respectively.

If the limit in (6.2) doesn’t exist for some set E, then dimB E is not defined. This does

occur, but let’s not worry about this. In most nice cases, the limit will exist. Also if E is an

unbounded set, then Nδ(E) =∞. So let’s stick to bounded sets.

Also one remark before we look at some examples. Recall that dimB E is, roughly

speaking, the exponent of 1/δ in Nδ(E). This means that we don’t have to be very precise

when calculating Nδ(E), as the following shows:

Theorem 6.1. Suppose there exist constants A,B > 0 and s ≥ 0 such that the following is

true:

A(1/δ)s ≤ Nδ(E) ≤ B(1/δ)s for all δ > 0. (6.3)

Then dimB E = s.

Proof. Start with (6.3) and take logarithms to get:

logA+ s log(1/δ) ≤ logNδ(E) ≤ logB + s log(1/δ) (6.4)

so

logA

log(1/δ)
+ s ≤ logNδ(E)

log(1/δ)
≤ logB

log(1/δ)
+ s (6.5)

Now apply the squeeze theorem to conclude dimB E = s.

Theorem 6.1 shows that constant multiplicative factors are not important. Let’s introduce

some useful and standard notation to hide unimportant constant factors.
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Definition 6.2. Let f and g be to nonnegative functions. First,

f(δ) . g(δ) means ∃A > 0 s.t. ∀δ, f(δ) ≤ Ag(δ). (6.6)

Next, f(δ) & g(δ) means g(δ) . f(δ)

Finally, f(δ) ≈ g(δ) means f(δ) . g(δ) and f(δ) & g(δ). In other words,

f(δ) ≈ g(δ) means ∃A,B > 0 s.t. ∀δ > 0, A g(δ) ≤ f(δ) ≤ B g(δ). (6.7)

(The notation in Definition 6.2 is closely related to big O notation. Also, in analytic

number theory, people tend to use � instead of ..)

Now we can restate Theorem 6.1 as: If Nδ(E) ≈ (1/δ)s, then dimB E = s.

6.3 Example: The middle third Cantor set

Consider the middle third Cantor set. Start with a unit line segment to get a set E0. Remove

the middle third to get E1, the union of two intervals of length 1/3. Repeat this way to get

E2, E3, . . .. Note that En consists of 2n intervals of length 3−n. The middle third Cantor set

is E =
⋂∞
n=0En.

We already saw in Section 6.1 that E “should” have dimension log2 3. Let’s prove it for

the box dimension.

Theorem 6.3. The middle third Cantor set has box dimension log2 3.

Proof. Let’s calculate Nδ(E). To motivate the more general argument to follow, suppose

first that δ = 3−n. That is, we want to count how many intervals of size 3−n we need to

cover E. Since E ⊂ En, we have Nδ(E) ≤ Nδ(En). Also note that Nδ(En) = 2n. To get a

lower bound for Nδ(E), note that each “box” (i.e., interval) of size δ can intersect at most

one interval of En. Thus, Nδ(E) ≥ 2n. So just showed

N3−n(E) = 2n (6.8)

Now we consider general values of δ. Let an n be the integer satisfying 3−n ≤ δ ≤ 3−n+1.

Then by the same reasoning as before, Nδ(E) ≤ Nδ(En) ≤ 2n. The argument for the lower

bound changes slightly. Each interval of size δ can intersect at most one interval of En−1.

There are 2n−1 intervals. So Nδ(En) ≥ 2n−1. We just showed

1

2
· 2n ≤ Nδ(E) ≤ 2n (6.9)

Also by how n was chosen, we have

1

3
· 3n ≤ 1/δ ≤ 3n (6.10)
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By the right half of (6.9) and the left half of (6.10), we have

Nδ(E) ≤ 2n = (3n)log3 2 ≤ (3/δ)log3 2 = 3log3 2(1/δ)log3 2 = 2(1/δ)log3 2 (6.11)

Similarly, by the other two halves,

Nδ(E) ≥ 1

2
≥ 1

2
(1/δ)log3 2. (6.12)

So we have shown

1

2
· (1/δ)log3 2 ≤ Nδ(E) ≤ 2 · (1/δ)log3 2. (6.13)

The theorem now follows from Theorem 6.1.

Protip 6.4. Using the asymptotic notation of Definition 6.2, (6.9) and (6.10) could be

rewritten as

Nδ(E) ≈ 2n (6.14)

1/δ ≈ 3n (6.15)

Then the remaining calculations in the proof above could be summarized the following chain:

Nδ(E) ≈ 2n = (3n)log2 3 ≈ (1/δ)log2 3 (6.16)

The nice thing about this approach is that you don’t need to deal with all the constant

multiplicative factors that we don’t care about anyways. Doing calculations in this way may

seem confusing at first, but after some practice, it will become natural. This is an essential

part of the training to become an Analysis MasterTM.

6.4 Box dimension as a way to measure “size” of a set

Let’s consider sets in the plane.

Theorem 6.5. If a bounded set E ⊂ R2 has positive area, then dimB E = 2.

Proof. Suppose E has area A > 0. Let δ > 0. Suppose we try to cover E by squares of

side δ. Each square has area δ2. So we need at least A/δ2 many squares to cover A, i.e.,

Nδ(E) ≥ A/δ2. This implies dimB E = 2.

The theorem works in higher dimensions as well:

Theorem 6.6. If a bounded set E ⊂ Rn has positive n-dimensional volume, then dimB E =

n.

Proof. Proof is the same as Theorem 6.5.

The contrapositive of Theorem 6.6 is: If a bounded set E ⊂ Rn has box dimension < n,

then it has zero n-dimensional volume. This shows that box dimension is a useful notion of

“size” of a set in Rn for sets that have zero volume.
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6.5 Flexibility in the definition of Nδ(E)

(We didn’t cover this section. It’s not needed for the remaining classes.)

For E ⊂ R2, let N◦δ (E) be the number of disks of radius δ needed to cover E.

1. If we have a cover of E by squares of side δ, then we can cover each square by a disk

of radius δ. This implies that N◦δ (E) ≤ Nδ(E).

2. If we have a cover of E by disks of radii δ, then we can cover each disk by 4 squares of

side δ. This implies that Nδ(E) ≤ 4N◦δ (E).

Using notation the ≈ notation from before

Nδ(E) ≈ N◦δ (E). (6.17)

So we could have also defined the box dimension as

lim
δ→0

logN◦δ (E)

log(1/δ)
= lim

δ→0

logNδ(E)

log(1/δ)
(6.18)

which means we could have also defined dimB E as the LHS of (6.18). This argument works

in higher dimensions. (We need different constants in (6.17), but that doesn’t matter.)

6.6 Lebesgue measure zero and Hausdorff dimension

(We didn’t cover this section. It’s not needed for the remaining classes.)

“Measure zero” is a basic concept from measure theory. We can define it without having

to define measure. (Measures are hard to define, and we don’t need them.)

Definition 6.7. Let n ∈ N. A set E ⊂ Rn has Lebesgue measure zero (or n-dimensional

Lebesgue measure zero, if we want to be precise) if the following statement is true:

∀ε > 0, ∃ balls {B(xi, ri)}∞i=1 such that E ⊂
⋃
i

B(xi, ri) and
∑
i

rni < ε. (6.19)

Roughly speaking, E has Lebesgue measure zero if it can be covered by balls which have

arbitrarily small total volume. In fact, when I say a set has “zero volume,” what I really

mean is that it has Lebesgue measure zero.

If we change the exponent n at the end of (6.19) to a different number, we get a closely

related notion:

Definition 6.8. Let n ∈ N. Let s ∈ R≥0. A set E ⊂ Rn has Hs-measure zero (or s-

dimensional Hausdorff measure zero) if the following statement is true:

∀ε > 0,∃ balls {B(xi, ri)}∞i=1 such that E ⊂
⋃
i

B(xi, ri) and
∑
i

rsi < ε. (6.20)

(Note that in Rn, Lebesgue measure zero and Hn-measure zero are the same thing.)
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In both of these definitions, the goal is to find an “efficient” cover of E by balls. Note

that if we’re trying to make
∑

i r
s
i very small, then each ri should be very small. The smaller

the exponent s is, the harder our task is.

Basic properties:

Example 6.9. Let E ⊂ R2 be a unit line segment.

First let’s show that E has Hs-measure zero when s > 1. For any M ∈ N, we can cover

E by M balls of radius 1/M . (Well, we could have done it with M/2 balls, but constant

factors won’t matter.) For these balls

M∑
i=1

rsi =
M∑
i=1

(1/M)s = M(1/M)s = M1−s (6.21)

Since s > 1, we have limM→∞M
1−s = 0. This completes the proof that E has Hs-measure

zero when s > 1.

Next, let’s show that E does not have Hs-measure zero when s ≤ 1. We need to show

that any covering of E with balls is inefficient, i.e.,
∑

i r
s
i is large. Let {B(xi, ri)}i be any

covering of E. Since each ball can only cover a length 2ri of E, and E has length 1, we must

have
∑

i(2ri) ≥ 1.

We may assume WLOG that ri ≤ 1 for all i. (Think about why.) Then since s ≤ 1,

rsi ≥ ri, so
∑
rsi ≥

∑
ri ≥ 1

2
. So E does not have Hs-measure zero when s ≤ 1.

The example suggests the following way to define a dimension:

Definition 6.10. Let E ⊂ Rn. Then the Hausdorff dimension of E is

dimH E = inf{s ≥ 0 : E has Hs-measure zero}. (6.22)

Some basic properties:

Theorem 6.11. Let s < t. If E ⊂ Rn has Ht-measure zero, then it has Hs-measure zero.

Proof. Kind of similar to the rsi ≥ ri argument at the end of Example 6.9.

Theorem 6.12. If E ⊂ Rn has positive volume, then it does not have Lebesgue measure

zero.

Proof. Kind of similar to Theorem 6.5.

6.7 Box vs Hausdorff dimension

(We didn’t cover this section. It’s not needed for the remaining classes.)
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In box dimension, we look at one scale at a time. We cover by boxes (or balls) of the

same size.

In Hausdorff dimension, we look at multiple scales at the same time. We’re not restricted

to using balls of the same size. It is easier to get an “efficient” cover of balls if we can use

different sizes. As a result, dimH E ≤ dimB E. (This requires proof, but intuitively it’s true.)

6.8 Dimension of self-similar sets

(We didn’t cover this section. It’s not needed for the remaining classes.)

Here we explain that informal discussion in Section 6.1 does in fact work in most cases.

In particular, the formula (6.1) can be used to compute the dimension of many self-similar

sets.

Let 0 < r < 1 and m ∈ N. Suppose E is a self similar set made up of m copies of itself

scaled by r. Suppose something called the “open set condition” is also satisfied. (Most nice

fractals you can think of will satisfy this condition.) Then dimH E = dimB E = logm
log(1/r)

.

Here is the precise statement. The open set condition is (6.24), below. It roughly says

that the copies in the self similar set do not overlap too much.

Theorem 6.13. Let 0 < r < 1 and m ∈ N. For i = 1, . . . ,m, let φi : Rn → Rn be a

similarity transformation with scaling factor r. Then

∃ a unique non-empty compact set E such that
m⋃
i=1

φi(E) = E. (6.23)

Suppose furthermore that

∃ a non-empty bounded open set V ⊂ Rn such that
m⋃
i=1

φi(V ) ⊂ V (6.24)

Then dimH E = dimB E = logm
log(1/r)

.

Proof. We won’t prove the theorem. One reference is Kenneth Falconer’s Fractal Geometry,

Theorem 9.3

The case of the middle third Cantor set corresponds to n = 1, m = 2, r = 1/3, and the

two similarity transformations are φ1(x) = 1
3
x and φ2(x) = 1

3
x+ 2

3
.

Fun fact 6.14. A collection of maps φi like the one in Theorem 6.13 is called an iterated

function system. These are useful in the study of dynamical systems.

6.9 Some random stuff

https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension

https://www.youtube.com/watch?v=gB9n2gHsHN4
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7 Day 3 exercises

Exercise 7.1. ( ) Think of other self-simliar sets and use the informal discussion in Sec-

tion 6.1 to determine what their “dimensions” should be. (Most likely, these numbers will

be correct, because of Theorem 6.13.)

Exercise 7.2. ( ) Here are other kinds of Cantor sets. Let 0 < p < 1. Start with the

unit interval. Remove an interval of length 1 − 2p from the middle, so that you have two

intervals of length p on either side. Repeat this so that you have 4 intervals of length p2, and

so on. What is the box dimension of this set? (The middle third Cantor set corresponds to

p = 1/3.)

Exercise 7.3. ( ) Let S1 ⊂ R2 denote the unit circle: S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Find upper and lower bounds on Nδ(S

1) and use these to determine dimB S
1.

Exercise 7.4. ( ) Suppose you have a self-similar set E ⊂ Rn, and you can split it to

get m copies of E, all rescaled by r ∈ (0, 1). Show that for all δ > 0, Nrδ(E) ≤ mNδ(E).

This is one step in the proof of Theorem 6.13.

Exercise 7.5. ( ) Can you find an example of a bounded set E for which dimB E

is undefined? What you need to do is make logNδ(E)
log(1/δ)

oscillate as δ → 0.

Exercise 7.6. ( ) Can you figure out the similarity transformations used in Sierpiński

triangle? Or the Koch snowflake? Or your favorite self-similar set? (By similarity transfor-

mation, I mean the functions φi in Theorem 6.13.)

8 Day 4: Putting things together

8.1 Besicovitch sets and the Kakeya conjecture

In Section 2, we solved the Kakeya needle problem: We showed that we can rotate a needle

in arbitrarily small area. What’s left? Zero area? (To define “zero area” rigorously, see

Definition 6.7. We won’t need this rigorous definition.)

It turns out a continuous rotation in zero area is not possible, by an intermediate value

theorem-type argument; see https://terrytao.wordpress.com/2008/12/31/a-remark-on-the-kakeya-needle-problem/.

However, if we allow the needle to “teleport from one position to another uncountably many

times,” then it is possible.

Theorem 8.1 (Besicovitch). There exists a set in in the plane with zero area, and which

contains a unit line segment pointing in every direction.

24

https://terrytao.wordpress.com/2008/12/31/a-remark-on-the-kakeya-needle-problem/


Here’s one way to prove Theorem 8.1: The idea is, roughly speaking, to take a limit of

the sliding triangle construction above as n→∞. To do this rigorously, we need to consider

the metric space of compact subsets of R2 with the Hausdorff metric. (I will not go into the

details.) We’ll see another way using point-line duality.

Sets in Rn which have a unit line segment in every direction are called Besicovitch sets.

Theorem 8.1 states that in R2, such sets can have zero area. In fact, this implies that in higher

dimensions, Besicovitch sets can also have zero n-dimensional volume. See Exercise 9.2.

As we described yesterday, the box dimension is a way of comparing sizes of sets that have

zero volume. The Kakeya conjecture is, roughly speaking, the statement that Besicovitch

sets in Rn cannot be much smaller than zero volume.

Conjecture 8.2 (Kakeya conjecture). Every Besicovitch set in Rn has box dimension and

Hausdorff dimension equal to n.

(The way I stated the conjecture is kind of redundant since the Hausdorff dimension is

less than or equal to the box dimension.)

Conjecture 8.2 is known to be true in 2 dimensions. But we don’t know for dimensions

≥ 3.

Conjecture 8.2 has connections to questions in many different fields, including harmonic

analysis, PDEs, analytic number theory, additive combinatorics, etc. If you solve it, you will

be given offers to join the math department at many famous universities. And probably win

the Fields Medal.

8.2 Point-line duality, revisited

(Warning: the notation used here is different from the notation in Section 4.)

Given (a, b) ∈ R2, define `(a, b) = {(x, y) : y = ax + b}. Note this is different from the

duality from Section 4. The reason for doing this is that we’re interested in lines of many

different directions, and the parameter a is precisely the direction. However, this is not

symmetric between (a, b) and (x, y):

(a, b) ∈ `(x, y) 6⇐⇒ (x, y) ∈ `(a, b) (8.1)

To address this lack of symmetry, we’re going to consider two copies of R2, which we’ll

refer to as the primal and dual. We will denote them by R2
primal and R2

dual. Given a point in

R2
primal, we define its dual line in R2

dual as above:

(a, b) ∈ R2
primal −→ `(a, b) = {(x, y) : y = ax+ b} ⊂ R2

dual. (8.2)
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If we have a point (x, y) ∈ R2
dual, then its “primal line” should also be defined by y = ax+ b.

But now, x and y are fixed, and this is a line in the ab-plane. That is,

˜̀(x, y) = {(a, b) : b = (−x)a+ y} ⊂ R2
primal ←− (x, y) ∈ R2

dual. (8.3)

(I’m trying to keep the primal on the left and the dual on the right.) So the point (x, y)

“un-dualizes” to become the line in the ab-plane with slope −x and b-intercept y.)

With these definitions, it is true that

(a, b) ∈ ˜̀(x, y) ⇐⇒ (x, y) ∈ `(a, b). (8.4)

Now let’s consider vertical lines in R2
dual. The primal of the line `t = {(x, y) : x = t}

is a point; let’s call it pt. What is pt? If we look at (8.2), we see that `(a, b) on produces

non-vertical lines. So pt must be a point at infinity.

In particular, pt is the point at infinity [1 : −t : 0], that is, the one corresponding to the

direction vector (1,−t) or slope −t. There are several ways to see this.

1. The point (t, 0) ∈ `t is a statement in R2
dual. The primal statement is ˜̀(t, 0) 3 pt. We

know ˜̀(t, 0) is a line with slope −t and that pt is a point at infinity. So pt must be the

point at infinity contained in all lines with slope −t. That is, it is the point at infinity

of direction (1,−t).

2. Consider (a, b) = (r,−tr) ∈ R2
primal, where r is very large. The dual to this is the line

y = rx− tr, or x = t+ y
r
. If we send r →∞, this becomes x = t, as desired.

See Figure 7 for a summary of this section.

R2
primal R2

dual

(a, b) `(a, b) = {(x, y) : y = ax+ b}

˜̀(x, y) = {(a, b) : b = (−x)a+ y} (x, y)

pt = point at infinity in direction (1,−t) vertical line `t = {(x, y) : x = t}

Figure 7: Summary of the correspondence between R2
primal and R2

dual
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8.3 The area of a set of line segments

Given E ⊂ R2
primal, we define L(E) =

⋃
(a,b)∈E `(a, b). Let S be the vertical strip {(x, y) : 0 ≤

x ≤ 1}. We are interested in the area of L(E) ∩ S. By splitting into cross sections,

area of L(E) ∩ S =

∫ 1

0

(length of L(E) ∩ `t) dt (8.5)

(Recall `t = {x = t}.) In particular, if for all t ∈ [0, 1], the length of L(E) ∩ `t is ≤ ε, then

the area of of L(E) ∩ S will be ≤ ε.

The object L(E) ∩ `t is something in R2
dual. What is the corresponding thing in the

primal R2
primal? We know that the primal of L(E) is E itself. As discussed in Section 4.5, the

intersection L(E)∩ `t un-dualizes to become the projection of E from the point pt. Since pt

is a point at infinity, we are interested in how many lines of slope −t intersect E. We can

just think of this as an orthogonal projection.

Remark 8.3. Actually, the intersection L(E) ∩ `t is not congruent to the orthogonal pro-

jection in direction (1,−t). If you work out the relationship with some equations, you will

see that they are similar to each other, with a scaling factor of
√

1 + t2. Since we only care

about t ∈ [0, 1], this scaling factor is between 1 and 2, so it doesn’t affect anything.

8.4 Sliding triangles, revisited

(We’re going to rotate our sliding triangles setup 90 degrees, so that triangles slide vertically

instead of horizontally.)

Suppose we have a triangle ABC, with C on the y-axis, and A and B on the vertical

line x = 1 with A below B. Let a0 be the slope of CA and let a1 be the slope of CB. (So

a0 < a1.) And suppose the point C is (0, c).

Rotation of the needle from CA to CB can be thought of as something happening in the

dual. In the primal, it is moving along the line segment from (a0, c) to (a1, c). This makes

sense, because the primal of the point C is the horizontal line with b-coordinate equal to c.

See Figure 8.

Sanity check: Intersection of ABC with vertical line `t (t ∈ [0, 1]) corresponds to pro-

jecting the line segment in direction (1,−t). For example when t = 0, this is projecting

horizontally, which only gives one point. As we increase t to 1 we get larger and larger

projections. See Figure 9.

Now let’s cut triangle ABC in half. The median from C to AB has slope a0+a1
2

. So in

the primal, we’re just dividing our line segment in half. The left half of the segment (from

a0 to a0+a1
2

) corresponds to the lower half of the triangle ABC. See Figure 10.

Now we vertically translate one of the two halves. Let’s move the left-half upwards. That
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(a) primal (b) dual

Figure 8: The green line segment in the primal corresponds to rotating the needle in the

dual.

(a) primal (b) dual

Figure 9: Projection in the (1,−t) direction corresponds to intersection with the vertical line

x = t. This is illustrated for t = 0 and t = 1/2.

preserves all the slopes, but it changes the y-intercept. So in the primal, that is translating

the left half of the line segment upwards. See Figure 11.

The vertical discontinuity in the line segment corresponds to “teleportation.”

Note that the projections in some directions that we care about have gotten smaller

thanks to overlap. This corresponds to the vertical slices in the dual having smaller total

length thanks to overlap.

Another sanity check. Let’s compare some projections with some vertical slices. See

Figure 12.

The idea for sliding m triangles is the same. To cut ABC into m triangles, just divide our

line segment into m pieces. Then we can translate each of the m pieces vertically. And the
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(a) primal (b) dual

Figure 10: Dividing the line segment in half in the primal corresponds to dividing the triangle

in half in the dual.

(a) primal (b) dual

Figure 11: Translating the red segment upwards in the primal corresponds to translating

the red triangle up in the dual.

goal is for the projection to be small for any direction between (1, 0) (horizontal direction)

and (1,−1) (45 degrees direction).

Back in Section 2, we showed the following.

Theorem 8.4. Start with an equilateral triangle ABC of height 1, with AB vertical. For

any ε > 0, we can divide this triangle (by drawing lines from C to AB) and translate each

piece vertically so that the resulting figure has area ≤ ε.

By duality, Theorem 8.4 is essentially the same as the following theorem.

Theorem 8.5. Start with the line segment connecting (−1, 0) and (1, 0). For any ε > 0, we

can divide this segment into subsegments and translate each piece vertically so that for any

t ∈ [0, 1], the orthogonal projection of our segments in direction (1,−t) has length ≤ ε.

Here’s why I said “essentially the same” instead of “the same”: The line segment in

Theorem 8.5 corresponds to a right triangle in the dual instead of an equilateral triangle,
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(a) primal (b) dual

Figure 12: The projections on the left correspond to the vertical slices on the right. Notice

that the green projection is made up of two small intervals, while the orange projection is a

single interval. The same is true for the corresponding slices on the right.

but that’s not important. Also, Theorem 8.5 implies Theorem 8.4, but the converse is not

quite true. A set has small area if all of its vertical cross sections have small length. But the

converse is not true.)

Theorem 8.5 is true, but we’re not going to prove it.

If we return to our iterative procedure from Section 2, we can try to un-dualize this to

show that the answer to Theorem 8.5 is “yes.” But let’s not return to that iterative procedure

from before. There’s no reason to use that exact construction. We have more flexibility. In

fact, we can modify Theorem 8.5 slightly, which we do tomorrow (see also Exercise 9.4).

9 Day 4 exercises

Exercise 9.1. ( ) Very important: Make sure you understand the primal-dual correspon-

dence for the sliding triangles construction. We will need it for tomorrow.

Exercise 9.2. ( ) Using Theorem 8.1, show that there exist Besicovitch sets in R3 with

zero volume. (Does the argument generalize to higher dimensions?)

Exercise 9.3. ( ) When we un-dualized the sliding triangle construction, we ended up

with a bunch of horizontal line segments. What would a non-horizontal line segment mean?

Exercise 9.4. ( ) (This is a fun problem. We’ll go over one way to answer this tomor-

row.) Can you find a way to construct a set E ⊂ R2 with the following properties?

1. E is made up of a finite union of closed line segments.
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2. The orthogonal projection of E onto the horizontal axis (i.e., projection in the vertical

direction) contains the interval [−1, 1].

3. For every t ∈ [0, 1], the orthogonal projection of E in direction (1,−t) is small. (I’m

not being very precise by “small” here. Try to get it as small as you can.)

Hint: See https://en.wikipedia.org/wiki/Window_blind#Types for some inspiration.

(A projection is like a shadow that the sun casts on your set. You want something with

large shadows when the sun is directly on top, but small shadows when the sun is in other

positions.)

10 Day 5

10.1 A slightly modified approach

Let’s say we want to rotate the needle from slope −1 to slope 1. We are allowed to teleport

it finitely many times. We also want to keep it in the strip {0 ≤ x ≤ 1}. And we want it to

cover small area.

A non-vertical line segment in R2
primal corresponds to a rotation of a line with a point kept

fixed. In the examples described above, the fixed point in the rotation was always on the

y-axis x = 0. That is why we had horizontal line segments in R2
primal. But there’s no reason

to also rotate around points on the y-axis. We can allow line segments in other directions.

We will show the following

Theorem 10.1. Let ε > 0. We can find a set E ⊂ R with the following properties.

1. E is made up of a finite union of closed line segments.

2. The orthogonal projection of E onto the horizontal axis (i.e., projection in vertical

direction) contains the interval [−1, 1].

3. For every t ∈ [0, 1], the orthogonal projection of E in direction (1,−t) has length ≤ ε.

Moving along a line segment is like rotating the needle. Vertical teleportation (by chang-

ing the b-coordinate) is like translating the needle without rotating it. The second condition

in Theorem 10.1 is to make sure that we can indeed start at a = −1 and make it to a = 1

by moving along line segments and teleporting vertically.

One way to show that the answer to Theorem 10.1 is “yes” is to use the iterated Venetian

blinds construction. See Figure 13. Here is a description in words (which may be hard to

understand... just look at the picture). Start with E0 the horizontal line segment from

(−1, 0) to (1, 0). Next, choose an angle θ1 and a number N1 ∈ N, and replace E0 with N1
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segments of equal length such that each segment has one endpoint in E0, and makes angle

θ1 with E0. Call this new set E1. Now choose θ2 and N2. For each segment S in E1, replace

it with N2 segments, each with an endpoint in S, and makes angle θ2 with S.

Figure 13: Iterated Venetian blinds

Note that by construction, the first two conditions of Theorem 10.1 are automatically

satisfied. If you choose the θi very small and the Ni very large, then after finitely many

steps, you can get something which also satisfies the third condition. Let’s explain this in

more detail.

Sketch of proof of Theorem 10.1. Fix ε > 0. In what follows, when we say a set has “small

projection” in some direction, we mean that the length of the orthogonal projection is strictly

less than ε.

Start with E0 the horizontal line segment from (−1, 0) to (1, 0). Let θ1 > 0 be the angle

such that the orthogonal projection of E0 in direction θ1 > 0 has length ε/2. (Here, direction

θ means direction (cos θ,− sin θ).

Then the projection of E0 is small for all directions in [0, θ1]. In fact, we can take a

small open neighborhood U0 ⊃ E0 such that the projection of U0 is small for all directions

in [0, θ1]. Pick N1 so large that the resulting Venetian blind E1 ⊂ U0. (Recall that E1 is

determined by E0, θ1, and N1.) Since E1 ⊂ U0, we know that the projection of E1 is small

for all directions in [0, θ1]

In fact, Pθ1(E1) is made up of N1 points, so it has length 0. As before, let θ2 > 0 be

the angle such that the orthogonal projection of E2 in direction θ1 + θ2 has length ε/2. Let

U1 ⊃ E1 be an open neighborhood of E1 such that the projection of U1 is small for all

directions in [0, θ1]. Then pick N2 so that E2 ⊂ U1.

Repeat for E3, E4, . . .. This doesn’t go on forever, because of the following.

1. You’re done when θ1 + · · ·+ θn = π/4 (since this means you reached slope −1).

2. For all i, we have θi ≥ 1
100
ε. This is because of how θi was chosen. (The number 1

100

is not important. What’s important is that it is some absolute constant. I just did a

quick calculation and 1
4
√
2

works too. You might even be able to do better.)

Once the process terminates, we’re done!

This iterated Venetian blind construction gives us another way to construct Kakeya sets!
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10.2 Construction of a Besicovitch set

We can do the iterated Venetian blind construction without stopping. And we can go around

and around and around, i.e.
∑∞

i=1 θi =∞. If you check the details carefully, you can get the

following:

Theorem 10.2. Let ε > 0. We can find a set E ⊂ R2 with the following properties.

1. The orthogonal projection of E onto the horizontal axis (i.e., projection in direction

(0, 1)) contains the interval [−1, 1].

2. For every t ∈ R, the orthogonal projection of E in direction (1, t) has zero length.

In other words, E projected onto the a-axis contains the interval [−1, 1]. But when

projected in any other direction, it has zero length! From this, it follows that every vertical

cross section of L(E) (the dual of E) has length zero, and therefore L(E) has area zero! So

we just showed that L(E) has area zero, and for every a ∈ [−1, 1], there is a line in L(E) of

slope a. This implies the following (by making a rotated copy):

Corollary 10.3. There exists a set in R2 of area zero that contains a full line in every

direction.

Fun fact 10.4. There’s something more general than Theorem 10.2 called the digital sundial

theorem. The proof is by iterated Venetian blinds as well. See https://en.wikipedia.org/

wiki/Digital_sundial#Fractal_sundial

10.3 Construction of another Besicovitch set

Let’s use some very powerful theorems to prove some powerful results.

Consider the four-corner Cantor set, the fractal generated by the process shown in Fig-

ure 14a. There are several basic facts about this set.

1. It is self-similar, with 4 copies of itself rescaled by 1/4. So it has box dimension and

Hausdorff dimension equal to 1.

2. If you project the four-corner Cantor set in the direction (1, 2), you get a full interval.

See Figure 14b.

The following is also true about the four-corner Cantor set, but it is highly nontrivial.

Theorem 10.5. The projection of the four-corner Cantor set in almost every direction has

length zero.
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(a) The four corner Cantor set is
⋂
nEn (b) Projection in direction (1, 2)

Figure 14

(To define “almost every” requires some measure theory. It means that the set where the

statement fails is a set of measure zero. Don’t worry about this)

Let’s take Theorem 10.5 for granted now. This, together with Figure 14b, gives us the

following: If you rotate the four-corner Cantor set by angle arctan(1/2), then you get a set A

which we projected vertically is an interval, but in almost every direction, the projection has

length zero. Then using our prior discussion, L(A) has area zero. By making finitely many

rotated copies of L(A), we get another set of area zero which has a line in every direction.

Nice!

(The next few paragraphs don’t make much sense.)

To prove Theorem 10.5, we could do it directly, using some self-similar properties along

with some “density” arguments. Or we could use the following very powerful theorem.

Theorem 10.6 (Besicovitch projection theorem). Let E be a compact purely unrectifiable

set of positive and finite 1-dimensional Hausdorff measure. Then the projection of E in

almost every direction has length zero.

The four-corner Cantor set satisfies all the conditions of Theorem 10.6. Purely unrecti-

fiable means that any smooth curve intersects E in a set of length zero.

Uhh, like I said, that probably didn’t make sense. Take a look instead at Kenneth

Falconer’s The geometry of fractal sets, especially Chapters 6 and 7.

10.4 Proof of Kakeya conjecture in 2-dimensions

Theorem 10.7. There exists a constant C > 0 such that if E ⊂ R2 is any set with a unit

line segment in every direction, then Nδ(E) & (1/δ)2(log(1/δ))−1.

The proof is very combinatorial. The basic idea is two line segments cannot intersect

“too much.” If you want an efficient cover of a Besicovitch set with boxes, most of the boxes

will not be able to cover many line segments at once.

More precisely, if two line segments L1 and L2 make an angle θ with each other and

θ ≥ δ, then the {x ∈ L1 : distance from x to L2 is ≤ δ} has length . δ/θ. So if we try to
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cover L1 ∪ L2 with balls of size δ, then most of the balls will only intersect one of the two

segments.

Corollary 10.8. Every Besicovitch set in the plane has box dimension 2.

10.5 Circular arcs

We showed that we can move a needle (unit line segment) from any position in the plane

to any other position in arbitrarily small area. What happens if we have a curved needle?

Kornélia Héra and Miklós Laczkovich showed that if you have a short circular arc, you can

do the same. (Their proof works for an arc that is 1/5 of the circle, but not for 1/4 of the

circle.) They did this by adapting the construction used by Cunningham in his paper “The

Kakeya Problem for Simply Connected and for Star-Shaped Sets.” (Cunningham does not

use Perron trees.)

See https://arxiv.org/abs/1802.00290

Marianna Csörnyei (my PhD advisor) and I showed that we could do it for circular arcs

smaller than 1/2 of a circle. We actually proved something for rectifiable curves in general.

The result for rectifiable curves is a little technical to state here.

We looked at what Cunningham’s construction was like in the dual, and discovered that

it was made up of Venetian blind-like zigzags. Then we realized that this path could also be

used to move a circular arc and other curves. Point-line duality led us to our construction

even though our construction does not use point-line duality in the end.

See https://arxiv.org/abs/1609.01649

For arcs longer than 1/2 of a circle, we don’t if it’s possible.

10.6 Connections to Fourier analysis

In the 1970s, Charles Fefferman connected the Kakeya needle problem to a question in

Fourier analysis. He did this in a 7-page paper called “The multiplier problem for the ball.”

Here is the question, in intuitive terms. Suppose you have a function f : R2 → C, and

you remove the high frequencies of f in a very particular way. As you add these frequencies

back in, will you get back f in the limit? Most mathematicians believed the answer to be

“for some notions of convergence, yes.” But Fefferman showed that the answer was no! He

was able to construct a counterexample using Perron tree-like sets.

Here is the above discussion more precisely. Start with a function f : R2 → C. Define

the Fourier transform f̂(ξ) =
∫
R2 f(x)e−2πix·ξ dx and the ball multiplier operator TRf(x) =∫

|ξ|≤R f̂(ξ)e2πix·ξ dξ. Is is true that limR→∞ TRf = f? If the limit is viewed in L2(R2), the

answer is yes (easily, by Plancherel), but Fefferman showed that for p 6= 2, convergence does

not necessarily hold in Lp(R2).
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11 Day 5 exercises

Exercise 11.1. ( ) Check the details of the proof of the iterated Venetian blind con-

struction used in Theorem 10.1.

Exercise 11.2. ( ) Prove Theorem 10.7. It’s really a combinatorial argument.

Exercise 11.3. ( ) Show that Corollary 10.8 follows from Theorem 10.7.
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