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1 Introduction

1.1 Course blurbs

1.1.1 The derivative as a linear transformation

Suppose we have a function f : R3 → R2. We can write f(x, y, z) = (g(x, y, z), h(x, y, z)). In

multivariable calculus, we learn about partial derivatives of f . There are 6 different partial

derivatives, which we can arrange into a matrix:(
∂xg(x, y, z) ∂yg(x, y, z) ∂zg(x, y, z)

∂xh(x, y, z) ∂yh(x, y, z) ∂zh(x, y, z)

)
(1.1)
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If all the partial derivatives are continuous, then the matrix above is called the total derivative

(or just derivative) of f and is denoted f ′(x, y, z).

Arranging all the partial derivatives this way is not just for notational convenience. A

2 × 3 matrix represents a linear transformation R3 → R2. In this class, we will see how to

think of the derivatve of a Rm → Rn map as a linear transformation, and we will use this

point of view to prove and interpret results such as the chain rule (in both single-variable

and multivariable calculus).

Prerequisites: You should know the definition of the derivative from single-variable cal-

culus. (You do need to know any multivariable calculus. Furthermore, this class does not

overlap with Mark’s multivariable class from Week 1.) You should be comfortable with

matrix multiplication.

1.1.2 The inverse and implicit function theorems

If a function f : R→ R satisfies f ′(x) 6= 0 for all x, then the function f is invertible. In this

class, we will look at a generalization of this to higher dimensions called the inverse function

theorem: “If f : Rn → Rn is a function such that f ′ is continuous and det f ′(x0) 6= 0, then

f is locally a C1 homeomorphism near x0.” (We will explain the precise meaning of this in

class.)

It turns out the higher-dimensional situation is much harder than the one-dimensional

situation. To understand the proof of the inverse function theorem, we will need tools such

as the total derivative, linear algebra, and the Banach fixed-point theorem. We will also see

a corollary of the inverse function theorem called the implicit function theorem, which allows

us to describe solutions to system of equations as C1 submanifolds of Euclidean space.

Prerequisites: Week 2 “Introduction to analysis” and Week 4 “The derivative as a linear

transformation” (or the equivalent to these classes)

1.2 References

Rudin, Principles of mathematical analysis, Chapter 9

(Almost any other analysis textbook that has a section on multivariable calculus should

also cover this material.)

1.3 Guide for these notes

For the exercises, here is the difficulty scale:

� : easy

� : medium
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� : hard

The words “easy,” “medium,” and “hard” are not well-defined. Don’t be afraid of difficult

problems! It’s by struggling with these exercises that you really learn.

Things labeled “Fun fact” are not needed for the class.

2 Day 1 (Derivative, Day 1)

2.1 Introduction

One goal of this class is to show how linear algebra is used to understand one of the most

fundamental concepts in calculus: the derivative.

We will consider functions f : Rm → Rn. We will consider single-variable calculus and

multivariable calculus. The “single-variable” in “single-variable calculus” refers to the case

m = 1 (not to the case n = 1).

I assume everyone is already familiar with single-variable calculus. When we discuss

single-variable calculus, the point is not to introduce new material, but to present material

you already know in a new way. It may seem unnecessarily complicated to do this, but this

new way of thinking is how you can generalize

If you have taken a non-proof-based multivariable calculus class, you have had this ex-

perience: The term “differentiable” was presented (maybe non-rigorously), but it was not

emphasized, and then you quickly moved on to other topics.

2.2 Notation

Vectors will be written in boldface, e.g., “x ∈ Rm.” When a function is written in boldface,

it means its outputs are vectors, so we write “f : Rm → R” and “f : R → Rn.” (When

handwriting in lecture, I use an arrow like in ~x instead of boldface.)

Unless otherwise stated, a “vector” is a column vector. Also, because writing actual

column vectors in the middle of a sentence looks bad, when we write (1, 3, 5), we mean the

vector

1

3

5

.

A n ×m matrix is a matrix with n rows and m columns. The set of n ×m matrices is

denoted Rn×m.

Example 2.1. f(x) = x2. The name of the function is “f”, so it is correct to say “f is

a function.” Often people will say “f(x) is a function” but this is actually an abuse of

notation. “f(x)” denotes the value of the function when the input is x.
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Example 2.2. T (x) =

(
x x2 x3

x4 x5 x6

)
. Then

1. for each x, T (x) is a linear transformation R3 → R2.

2. for each x, T (x) : R3 → R2.

3. T : R→ R2×3.

However, if you interchange T (x) and T in any of the statements above, they become false.

2.3 Linear and affine functions

We define linear functions.

Definition 2.3 (“Abstract” definition). Let T : Rm → Rn be a function. We say T is linear

if it satisfies T (cx + dy) = cT (x) + dT (y) for any x,y ∈ Rm and c, d ∈ R.

Definition 2.4 (“Concrete” definition). Let T : Rm → Rn be a function. We say T is linear

if there exists a matrix A ∈ Rn×m such that T (x) = Ax for all x ∈ Rm.

A fundamental result from linear algebra (which we will not prove) is that the two

definitions are equivalent.

Example 2.5. Here are examples of linear functions in special cases.

1. f : R→ R is a linear function if and only if it is of the form f(x) = ax, where a ∈ R.

2. f : R→ Rn is a linear function if and only if it is of the form f(x) = ax, where a ∈ Rn.

(The expression ax denotes scalar multiplication, where x is the scalar and a is the

vector.)

3. f : Rm → R is an linear function if and only if it is of the form f(x) = a · x, where

a ∈ Rm. (The expression a · x denotes the dot product.)

Next we define affine functions.

Definition 2.6. Let T : Rm → Rn be a function. We say T is affine if there exists a n×m
matrix A and a vector b ∈ Rn such that T (x) = Ax + b for all x ∈ Rm.

Remark 2.7. Warning: What we call “affine” is what most high school math classes call

“linear.”

The main theme of this class is:

“Functions behave like their affine approximations.” (2.1)

The statement is in quotes because it is not a rigorous mathematical statement but we will

see several instances of this.
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2.4 1-dimension

Definition 2.8. We give three definitions of the derivative of a function R→ R.

1. Let f : R→ R and x ∈ R. We say f is differentiable at x if

lim
h→0

f(x+ h)− f(x)

h
(2.2)

exists. The number (2.2) is called the derivative of f at x and it is denoted f ′(x).

2. Let f : R → R and x ∈ R. We say f is differentiable at x if there exists a number

a ∈ R such that

lim
h→0

|f(x+ h)− f(x)− ah|
|h|

= 0 (2.3)

The number a is called the derivative of f at x and it is denoted f ′(x).

3. Let f : R → R and x ∈ R. We say f is differentiable at x if there exists a number

a ∈ R and a function E : R→ R such that

f(x+ h) = f(x) + ah+ E(h) and lim
h→0

|E(h)|
|h|

= 0. (2.4)

The number a is called the derivative of f at x and it is denoted f ′(x).

It is not hard to see that these three definitions Definition 2.8(1), Definition 2.8(2), and

Definition 2.8(3) are equivalent. You are asked to do this Exercise 3.1. (Actually, we also

discussed this in class.)

Let us discuss these three definitions. The first definition (Definition 2.8(1)) is what peo-

ple usually see in a single-variable calculus class. It does not generalize to higher dimensions,

so we will have very little use of this definition. The other two definitions (Definition 2.8(2)

and Definition 2.8(3)) do generalize to higher dimensions.

Remark 2.9. We will work with the third definition (Definition 2.8(3)) a lot, so it is helpful

to discuss it in detail.

This definition has the following interpretation: We think x as fixed and h as varying.

We think of h 7→ f(x)+ah (as a function of h) as an “affine approximation” of h 7→ f(x+h).

We can think of E as the “error” of this approximation.

The color coding in (2.4) is for the constant term, the linear term, and the error term.

This will be used throughout these notes.

Let us look more at the condition

lim
h→0

|E(h)|
|h|

= 0. (2.5)
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This condition implies limh→0 |E(h)| = 0, but the converse is not true. For example the

function E(h) = h satisfies limh→0 |E(h)| = 0 but not limh→0
|E(h)|
|h| = 0.

The condition (2.5) means the error “becomes small very quickly as h → 0” and it

captures the geometric idea that “f(x+ h) and f(x) + f ′(x)h (viewed as functions of h) are

tangent at h = 0.”

Example 2.10. Consider the function f(x) = (x + 1)2. Let us consider an affine approxi-

mation at x = 0. We have

f(0 + h) = f(h) = (h+ 1)2 = 1 + 2h+ h2. (2.6)

Note that the error term above satisfies limh→0
|h2|
|h| = limh→0 |h| = 0. Thus, 1 + 2h is a good

affine approximation, and we do indeed have f ′(0) = 2.

If we had tried to write

f(h) = (h+ 1)2 = 1 + h+ (h+ h2). (2.7)

instead, then the error term has the property limh→0
|h+h2|
|h| = limh→0 |1 + h| = 1 6= 0. Thus,

1 + h is a bad affine approximation, and we have f ′(0) 6= 1.

2.5 The sum rule

Theorem 2.11. If f, g : R → R are differentiable at x, then so is f + g, and furthermore

(f + g)′(x) = f ′(x) + g′(x).

Proof. We may assume without loss of generality that x = 0. Suppose f(0) = a, f ′(0) =

b, g(0) = c, g′(0) = d. Then

f(h) = a+ bh+ Ef (h) (2.8)

g(h) = c+ dh+ Eg(h) (2.9)

Our goal is to determine (f + g)′(0). By adding together the two equations above,

(f + g)(h) = (a+ c) + (b+ d)h+ Ef (h) + Eg(h) (2.10)

The “error” in this affine approximation satisfies

lim
h→0

|Ef (h) + Eg(h)|
|h|

= 0 (2.11)

which proves that (f + g)′(0) = b+ d = f ′(0) + g′(0).
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2.6 The product rule

Theorem 2.12. If f, g : R → R are differentiable at x, then so is fg, and furthermore

(fg)′(x) = f(x)g′(x) + f ′(x)g(x).

Proof. We may assume without loss of generality that x = 0. Suppose f(0) = a, f ′(0) =

b, g(0) = c, g′(0) = d. Then

f(h) = a+ bh+ Ef (h) (2.12)

g(h) = c+ dh+ Eg(h) (2.13)

Multiplying these two together

f(h)g(h) = [a+ bh+ Ef (h)] [c+ dh+ Eg(h)] (2.14)

= ac+ (ad+ bc)h+ bdh2 + (c+ dh)Ef (h) + (a+ bh)Eg(h) + Ef (h)Eg(h) (2.15)

It remains to show that the error term satisfies

lim
h→0

|bdh2 + (c+ dh)Ef (h) + (a+ bh)Eg(h) + Ef (h)Eg(h)|
|h|

= 0 (2.16)

You are asked to do this in Exercise 3.2

2.7 Chain rule

Theorem 2.13 (Single-variable chain rule). Fix f, g, x. Suppose f is differentiable at x and

g is differentiable at f(x). Then (g ◦ f)′(x) = g′(f(x))f ′(x).

Proof, part 1. By definition of differentiability, we have

f(x+ h) = f(x) + f ′(x)h+ Ef (h) (2.17)

g(f(x) + k) = g(f(x)) + g′(f(x))k + Eg(k) (2.18)

(Recall that x is fixed, and h and k vary.) For the rest of the proof, we let k be the following

function of h:

k = f ′(x)h+ Ef (h). (2.19)

This gives

(g ◦ f)(x+ h) = g(f(x) + f ′(x)h+ Ef (h)) (2.20)

= g(f(x) + k) (2.21)

= g(f(x)) + g′(f(x))k + Eg(k) (2.22)

= g(f(x)) + g′(f(x))(f ′(x)h+ Ef (h)) + Eg(k) (2.23)

= g(f(x)) + g′(f(x))f ′(x)h+ g′(f(x))Ef (h) + Eg(k) (2.24)
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Now we show the error terms satisfies

lim
h→0

|g′(f(x))Ef (h) + Eg(k)|
|h|

= 0 (2.25)

You are asked to do this in Exercise 3.3. We will also do this tomorrow

3 Day 1 exercises

Recommended: Exercise 3.2, Exercise 3.5

Exercise 3.1. ( ) Show that the three definitions of the derivative in Definition 2.8 are

equivalent.

Exercise 3.2. ( ) Finish the proof of the product rule by proving (2.16). (Hint: Using

the triangle inequality, break the expression up into several parts.)

Exercise 3.3. ( ) Finish the proof of the chain rule by proving (2.25). We will also

do this tomorrow.

Exercise 3.4. ( ) Using Definition 2.8(3), show that for the function f(x) = 1
x
, we have

f ′(x) = − 1
x2

.

Exercise 3.5. ( ) This exercise will be useful for tomorrow. Let f : R2 → R be

f(x, y) =


xy

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
(3.1)

(See a plot of the function here: https://www.wolframalpha.com/input/?i=plot+z%3Dxy%

2F%28x%5E2%2By%5E2%29)

1. Let e1 = (1, 0), e2 = (0, 1),0 = (0, 0). Compute

lim
h→0

f(he1)− f(0)

h
(3.2)

and

lim
h→0

f(he2)− f(0)

h
(3.3)

2. Let v = (v1, v2) ∈ R2 be any vector. Compute

lim
h→0

f(hv)− f(0)

h
(3.4)

9

https://www.wolframalpha.com/input/?i=plot+z%3Dxy%2F%28x%5E2%2By%5E2%29
https://www.wolframalpha.com/input/?i=plot+z%3Dxy%2F%28x%5E2%2By%5E2%29


4 Day 2 (Derivative, Day 2)

4.1 A quick note on bounding the error terms

We have already seen a lot of “error terms” yesterday. You may get the impression that

“analysis is all about bounding error terms” or “analysis has a lot of ugly error terms.” But

I would suggest that you wait until you have more experience with analysis before making

these conclusions. It is true that in analysis, it is common to have error terms that you need

to bound. But for many of these, there are standard techniques for dealing with them, so

for someone experienced with these arguments, it is very clear how to bound the error terms

that we have been dealing with.

See also this blog post by Terry Tao. https://terrytao.wordpress.com/career-advice/

theres-more-to-mathematics-than-rigour-and-proofs/

4.2 Finishing the proof of the chain rule

Proof of Theorem 2.13, part 2. We need to show (2.25). First,

|g′(f(x))Ef (h)|
|h|

= |g′(f(x))| · |Ef (h)|
|h|

(4.1)

For the second term, we first note that

k = f ′(x)h+ Ef (h) = f ′(x)h+
Ef (h)

h
h so lim

h→0
k = 0 (4.2)

If k = 0, then |Eg(k)|
|h| = 0. If k 6= 0, then

|Eg(k)|
|h|

=
|Eg(k)|
|k|

· |f
′(x)h+ Ef (h)|
|h|

≤ |Eg(k)|
|k|

(
|f ′(x)|+ |Ef (h)|

|h|

)
(4.3)

Thus

lim
h→0

|Eg(k)|
|h|

= 0 (4.4)

4.3 The case R→ Rn

(We did not cover this section in class.)

Definition 4.1. We give three definitions of the derivative of a function R→ Rn.
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1. Let f : R→ Rn and x ∈ R. We say f is differentiable at x if

lim
h→0

f(x+ h)− f(x)

h
(4.5)

exists. The vector (4.5) is called the derivative of f at x and it is denoted f ′(x).

2. Let f : R → Rn and x ∈ R. We say f is differentiable at x if there exists a vector

a ∈ Rn such that

lim
h→0

|f(x+ h)− f(x)− ah|
|h|

= 0 (4.6)

The vector a is called the derivative of f at x and it is denoted f ′(x).

3. Let f : R → Rn and x ∈ R. We say f is differentiable at x if there exists a vector

a ∈ Rn and a function E : R→ Rn such that

f(x+ h) = f(x) + ah+ E(h) and lim
h→0

|E(h)|
|h|

= 0. (4.7)

The vector a is called the derivative of f at x and it is denoted f ′(x).

Theorem 4.2. Let f : R→ Rn and x ∈ R. Then f is differentiable at x if and only if fi is

differentiable at x for each i, and furthermore,

f ′(x) = (f ′1(x), . . . , f ′n(x)). (4.8)

4.4 The case Rm → R

Now we begin multivariable calculus. Let e1, . . . , em be the standard basis of Rm. (So

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc.)

Definition 4.3. Let f : Rm → R and x ∈ Rm. For j ∈ {1, . . . ,m}, the jth partial derivative

of f at x is

∂jf(x) = lim
t→0

f(x + tej)− f(x)

t
. (4.9)

In other words, it is the derivative of f , when viewed as a function of only xj (and all

other variables kept fixed).

Example 4.4. If f(x1, x2) = x1x
2
2 + x2, then ∂1f(x1, x2) = x22, and ∂2f(x1, x2) = 2x1x2 + 1.

If you have studied multivariable calculus, then you have definitely seen the definition

above. It might be tempting to define “f is differentiable at x” to mean “all the partial

derivatives ∂jf exists at x,” but this is not how things are done. We will see why later. The

actual definition of differentiability makes no mention of partial derivatives.
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Definition 4.5. We give two definitions of the derivative of a function Rm → R.

1. Let f : Rm → R and x ∈ Rm. We say f is differentiable at x if there exists a vector

a ∈ Rm such that

lim
h→0

|f(x + h)− f(x)− a · h|
|h|

= 0 (4.10)

The vector a is called the gradient of f at x and it is denoted ∇f(x).

2. Let f : Rm → R and x ∈ Rm. We say f is differentiable at x if there exists a vector

a ∈ Rm and a function E : Rm → R such that

f(x + h) = f(x) + a · h + E(h) and lim
h→0

|E(h)|
|h|

= 0. (4.11)

The vector a is called the gradient of f at x and it is denoted ∇f(x).

Remark 4.6. Recall limh→0
|E(h)|
|h| = 0 means:

∀ε > 0,∃δ > 0,∀h ∈ Rm, if |h| < δ then
|E(h)|
|h|

< ε (4.12)

We do not need this ε, δ definition in this class.

4.5 The relationship between ∇f and ∂jf

Definition 4.5 does not tell you how to actually calculate ∇f . The following theorem does

that.

Theorem 4.7. If f : Rm → R is differentiable at x, then ∇f(x) = (∂1f(x), . . . , ∂mf(x)).

Proof. Fix f and x. Let a = (a1, . . . , am) = ∇f(x). Recall that e1, . . . , em is the standard

basis of Rm. This implies aej = aj

From the definition of differentiability, we know

lim
h→0

|f(x + h)− f(x)− a · h|
|h|

= 0 (4.13)

which implies (by letting h = tej)

lim
t→0

|f(x + tej)− f(x)− ajt|
|t|

= 0 (4.14)

which is precisely the statement that ∂jf(x) = aj.
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Warning: Theorem 4.7 does not say: “If the partial derivatives ∂1f, . . . , ∂mf all exist at

x, then f is differentiable at x.” It also does not say: “If the directional derivatives ∂vf all

exist at x, then f is differentiable at x.” That statement is FALSE. See Exercise 5.3 and

Exercise 5.4. If you plot those examples, you will see that there is no good tangent plane

approximation to those functions at the origin.

Here is a fact which we will not prove.

Theorem 4.8. Let f : Rm → R and x ∈ Rm. If the partial derivatives ∂1f, . . . , ∂mf all exist

and are continuous at x, then f is differentiable at x.

4.6 The general case Rm → Rn

Definition 4.9. We give two definitions of the derivative of a function Rm → Rn.

1. Let f : Rm → Rn and x ∈ Rm. We say f is differentiable at x if there exists a matrix

A ∈ Rn×m such that

lim
h→0

|f(x + h)− f(x)− Ah|
|h|

= 0 (4.15)

The matrix A is called the derivative (or total derivative) of f at x and it is denoted

f ′(x).

2. Let f : Rm → Rn and x ∈ Rm. We say f is differentiable at x if there exists a matrix

A ∈ Rn×m and a function E : Rm → Rn such that

f(x + h) = f(x) + Ah + E(h) and lim
h→0

|E(h)|
|h|

= 0. (4.16)

The matrix A is called the derivative (or total derivative) of f at x and it is denoted

f ′(x).

We have defined the derivative of f . This definition does not say anything about what

the entries are.

Theorem 4.10. If f : Rm → Rn is differentiable at x, then entry in row i column j of the

matrix f ′(x) is ∂jfi(x).

Proof. The proof is similar to the proof of Theorem 4.7.

The following is the analogue of Theorem 4.8 (also stated without proof).

Theorem 4.11. Let f : Rm → Rn. Suppose for every i and j, the partial derivative ∂ifj

exists and is a continuous function. Then f is differentiable.
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Example 4.12. If f : Rm → R, then f ′(x) is a row vector. It is equal to the transpose of

∇f(x), which is a column vector.

Example 4.13. Let g : R3 → R2. We can write

g(x) = g(x1, x2, x3) =

(
g1(x1, x2, x3)

g2(x1, x2, x3)

)
(4.17)

Then

g′(x) =

(
∂1g1(x1, x2, x3) ∂2g1(x1, x2, x3) ∂3g1(x1, x2, x3)

∂1g2(x1, x2, x3) ∂2g2(x1, x2, x3) ∂3g2(x1, x2, x3)

)
(4.18)

4.7 Multivariable chain rule

Theorem 4.14 (Multivariable chain rule). Fix f : R` → Rm, g : Rm → Rn and x ∈
R`. Suppose f is differentiable at x and g is differentiable at f(x). Then (g ◦ f)′(x) =

g′(f(x))f ′(x).

Remark 4.15. Note that g′(f(x))f ′(x) denotes matrix multiplication and that g′(f(x)) ∈
Rn×m and f ′(x) ∈ Rm×`, so the matrix multiplication is possible.

Proof sketch. Everything in the proof of the single-variable chain rule (Theorem 2.13) works

until line (2.24). (Typographically, we only need to change everything to vectors.) For the

part afterwards, a few parts need to be changed to use something called the “operator norm.”

Exercise 5.5 defines the operator norm and asks you to work out the proof carefully.

Example 4.16. Let g : R2 → R and f : R → R2 be a function. We have (g ◦ f)(t) =

g(f1(t), f2(t)). We have

g′(x1, x2) =
(
∂1g(x1, x2) ∂2g(x1, x2)

)
f ′(t) =

(
f ′1(t)

f ′2(t)

)
(4.19)

By the multivariable chain rule Theorem 4.14, we have

(g ◦ f)′(t) =
(
∂1g(f(t)) ∂2g(f(t))

)(f ′1(t)
f ′2(t)

)
= ∂1g(f(t))f ′1(t) + ∂2g(f(t))f ′2(t). (4.20)

This is a form of the chain rule that is more often taught in multivariable calculus classes.

This is more commonly written

dg

dt
=
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt
(4.21)

where the left-hand side is understood to mean d
dt

[g(x(t), y(t))]. See Exercise 5.6 for another

example of the chain rule.
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4.8 Some applications

4.8.1 Inverse function theorem

If f : Rn → Rn is an affine function f(x) = Ax + b, then f is invertible if and only if A is an

invertible matrix.

If f : Rn → Rn is any C1 function, then the invertibility of f ′ at a particular point x0 tells

us something about the invertible of f near x0.

We will see more about this in the follow-up class, starting tomorrow.

4.8.2 Change of variables

If f : Rn → Rn is an affine function f(x) = Ax + b and S ⊂ Rn, then

(volume of f(S)) = | detA|(volume of S). (4.22)

This motivates the change of variables formula. If f : Rn → Rn, and y = f(x), then

dy1 · · · dyn = det f ′(x) dx1 · · · dxn (4.23)

or put another way,∫
f(S)

g(y) dy1 · · · dyn =

∫
S

g(f(x)) det f ′(x) dx1 · · · dxn (4.24)

5 Day 2 exercises

Recommended exercises: Exercise 5.1 and Exercise 5.6

Exercise 5.1. ( ) Let g : R2 → R2 be g(x1, x2) = (x21 − x22, 2x1x2). Compute g′(x).

Fun fact: Note that g′(x) is of the form(
a −b
b a

)
(5.1)

This is related to Exercise 5.7.

Exercise 5.2. ( ) For f : Rm → R and any vector v ∈ Rm, define the directional derivative

∂vf(x) = lim
t→0

f(x + tv)− f(x)

t
. (5.2)

(Sometimes people restrict v to be a unit vector. We don’t need to do that here.) Show that

if f is differentiable at x, then ∂vf(x) = ∇f(x) · v.

15



Exercise 5.3. ( ) Show that the function in Exercise 3.5 is not differentiable at (0, 0).

(Hint: Use Exercise 5.2.)

Exercise 5.4. ( ) This exercise will be useful for tomorrow. Let f : R2 → R be

f(x, y) =


x2y

x4 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(5.3)

(See a plot of the function here: https://www.wolframalpha.com/input/?i=plot+z%3Dx%

5E2y%2F%28x%5E4%2By%5E2%29)

1. Let v = (v1, v2) ∈ R2 be any vector. Compute

lim
h→0

f(hv)− f(0)

h
(5.4)

2. Show that the function in Exercise 3.5 is not differentiable at (0, 0). (Note that unlike

in Exercise 5.3, here, Exercise 5.2 does not help.)

Exercise 5.5. ( ) This problem asks you to prove the multivariable chain rule

Theorem 4.14. As stated in Section 4.7, we can adapt the proof of the single-variable chain

rule. We provide some ideas here.

One tool we need is the operator norm of a matrix. For A ∈ Rn×m, we define the operator

norm of A to be

‖A‖ = max{|Av| : v ∈ Rm, |v| = 1} (5.5)

We can show that

|Av| ≤ ‖A‖ |v| for all A ∈ Rn×m,v ∈ Rm (5.6)

which is a suitable substitute of the fact |ab| ≤ |a| |b| for a, b ∈ R.

We can use (6.9) to obtain multivariable analogues of (4.1), (4.2), and (4.3). For example,

the analogue of line (4.1) is

|g′(f(x))Ef (h)|
|h|

≤ ‖g′(f(x))‖|Ef (h)|
|h|

(5.7)

and the analogue of line (4.2) is

|k| = |f ′(x)h + Ef (h)| ≤ ‖f ′(x)‖ |h|+ |Ef (h)|
|h|

|h| so lim
h→0

k = 0 (5.8)

Line (4.3) also needs an analogue. We leave that as part of the exercise.
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Exercise 5.6. ( ) Suppose g is a function of x, y, z, and suppose x, y, z are all functions

of s and t. Show that the multivariable chain rule Theorem 4.14 implies

∂g

∂s
=
∂g

∂x

∂x

∂s
+
∂g

∂y

∂y

∂s
+
∂g

∂z

∂z

∂s
(5.9)

∂g

∂t
=
∂g

∂x

∂x

∂t
+
∂g

∂y

∂y

∂t
+
∂g

∂z

∂z

∂t
(5.10)

Exercise 5.7. ( ) By identifying C with R2, we can define a bijection between the set of

functions C→ C and the set of functions R2 → R2 as follows: Given a function f : C→ C,

define g : R2 → R2 by g(x, y) = (Re f(x+ iy), Im f(x+ iy)).

1. We say a function f : C→ C is complex linear if there exists a ∈ C such that f(z) = az.

Show that the corresponding g : R2 → R2 is linear, and find the 2 × 2 matrix for g.

Give a geometric interpretation for this matrix.

2. Let f : C → C. We say f is complex differentiable at z if there exists a a ∈ C such

that f(z+ h) = f(z) + ah+ E(h), where limh→0
|E(h)|
|h| = 0. (Here, h ∈ C.) The number

a is called the derivative of f at z and is denoted f ′(z).

If f is complex differentiable at z = x1 + ix2 ∈ C, show that the corresponding

g : R2 → R2 satisfies the Cauchy–Riemann equations at (x1, x2):

∂1g1(x1, x2) = ∂2g2(x1, x2) (5.11)

∂1g2(x1, x2) = −∂2g1(x1, x2) (5.12)

6 Day 3 (Inverse/Implicit, Day 1)

6.1 Continuously differentiable functions

In this class, we will focus exclusively on C1 functions.

Definition 6.1. A function f : Rm → Rn is C1 (or continuously differentiable) if for every i

and j, the partial derivative ∂ifj exists and is a continuous function.

Recall from Theorem 4.11 that C1 functions are differentiable.

Definition 6.2. Let U, V ⊂ Rn be two open sets. We say f : U → V is a C1 homeomorphism

(or C1 diffeomorphism) if f is a bijection, f is C1, and f−1 : V → U is C1.

Example 6.3. Here are some examples and non-examples.

1. For any a, b ∈ R with b 6= 0, the function f(x) = a + bx is a C1 homeomorphism

between (0, 1) and (a, a+ b).
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2. f : (−π
2
, π
2
)→ R given by f(x) = tan x is a C1 homeomorphism.

3. f : R → R given by f(x) = x3: f is C1 and a bijection. However, f−1 is not C1.
(The derivative of f−1(y) = y1/3 is not defined at y = 0.) Thus, f is not a C1

homeomorphism.

4. f : (0, 1) → (0, 1) given by f(x) = x3 is a C1 homeomorphism. We removed the

problematic point x = 0.

6.2 The inverse function theorem in one dimension

Here is a 1-dimensional inverse function theorem.

Theorem 6.4 (1-dimensional “global” inverse function theorem). Let f : I → R be a C1

function. Suppose that f ′(x) 6= 0 for all x ∈ I. Then f(I) is an open interval, and f is a

bijection between I and f(I). Furthermore, the inverse map g = f−1 : f(I)→ I satisfies

g′(y) =
1

f ′(g(y))
(6.1)

Proof. We break the proof down into several steps. This theorem is not the main focus of

the class, so we will leave some of the steps as exercises.

Step 1: First, we show f is injective. Because f ′ is continuous and f ′(x) 6= 0 for all x ∈ I,

we know either f ′(x) > 0 for all x or f ′(x) < 0 for all x. Without loss of generality, assume

f ′(x) > 0 for all x. This implies that f is strictly increasing on I, so f is injective.

Step 2: Next, we show f(I) is open. Actually let’s leave this as an exercise. See Exercise 7.1.

Step 3: Next, we show g = f−1 is continuous on f(I). Actually, let’s leave this as an exercise

too. See Exercise 7.1.

Step 4: Finally, we show (6.1). Fix y ∈ f(I). Let x = g(y).

We let h and k vary, but we relate the two by

h = g(y + k)− g(y) (6.2)

k = f(x+ h)− f(x) (6.3)

(It helps to draw a picture. If we graph f , then k is the “rise” and h is the “run.”) Note

that

lim
k→0

h = lim
k→0

[g(y + k)− g(y)] = 0 (6.4)

by the continuity of g. Thus,

g′(y) = lim
k→0

g(y + k)− g(y)

k
= lim

k→0

h

f(x+ h)− f(x)
= lim

h→0

h

f(x+ h)− f(x)
=

1

f ′(x)
. (6.5)
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Remark 6.5. The assumption that f ′ is continuous is unnecessary in Theorem 6.4. See

Exercise 7.2

Here is a “local version” of Theorem 6.4.

Corollary 6.6 (1-dimensional “local” inverse function theorem). Let f : R → R be a C1

function and x0 ∈ R. Suppose that f ′(x0) 6= 0. Then there exists an open interval I ⊂ R
containing x0 such that f is a C1 homeomorphism between I and f(I).

Proof. If f ′(x0) 6= 0 and f ′ is continuous, there exists an open interval I containing x0 such

that f ′(x) 6= 0 for all x ∈ I. Now we can apply Theorem 6.4.

Here is another way to state Corollary 6.6: If f : R → R is C1, then f ′(x0) 6= 0 implies

that f is a local C1 homeomorphism near x0. Here, the key word is “local.”

Remark 6.7. Unlike Remark 6.5, in Corollary 6.6, it is important to require f to be C1 and

not only differentiable. Exercise 7.3 asks you for a counterexample.

6.3 The statement of the inverse function theorem in higher di-

mensions

We will generalize Corollary 6.6 to higher dimensions.

Example 6.8. Consider f : R2 → R2 defined by f(x, y) = (ex cos y, ex sin y). Then we

compute

f ′(x, y) =

(
∂xf1 ∂yf1

∂xf2 ∂yf2

)
=

(
ex cos y −ex sin y

ex sin y ex cos y

)
, (6.6)

so det f ′(x, y) = e2x 6= 0 for all (x, y) ∈ R2.

The inverse function theorem is another statement along the ideas of “functions behave

like their affine approximations” (2.1). In this case, it is “If the affine approximation to f at

a is invertible, then f is locally invertible near a.”

Theorem 6.9 (Inverse function theorem). Let f : Rn → Rn be a C1 function, and suppose

det f ′(a) 6= 0. Then there exists an open set U ⊂ Rn such that a ∈ U , and such that f is a

C1 homeomorphism between U and f(U). Furthermore, the inverse map g = f−1 : f(U)→ U

satisfies

g′(y) = f ′(g(y))−1. (6.7)
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Before we begin the proof of the inverse function theorem, we’ll start by presenting some

useful tools in the proof. Knowing these tools may even more helpful than knowing the proof

of the theorem. These tools are:

1. Operator norm of a matrix

2. Mean value inequality

3. Banach fixed point theorem

6.4 Operator norm

For A ∈ Rn×m, we define the operator norm of A to be

‖A‖ = max{|Av| : v ∈ Rm, |v| = 1} (6.8)

Note that for any A ∈ Rn×m, ‖A‖ is finite by the extreme value theorem. (The linear

function A : Rm → Rn is continuous, and the set {v ∈ Rm : |v| = 1} is compact.) The

extreme value theorem also explains why we can write max instead of sup.

The key property of the operator norm we need is the following

|Av| ≤ ‖A‖ |v| for all A ∈ Rn×m,v ∈ Rm (6.9)

You are asked to prove this in Exercise 7.4. This is a useful way to bound expressions of the

form |Av|.

7 Day 3 exercises

Recommended exercises: Exercise 7.4, Exercise 7.8

Exercise 7.3 is fun if you like counterexamples in analysis.

Exercise 7.1. ( ) Fill in steps 2 and 3 of the proof of Theorem 6.4. (Hints: For step 2,

show that f(I) = (infI f, supI f). For step 3, use the fact that f is continuous and strictly

increasing.)

Exercise 7.2. ( )

1. Let f : R → R be a differentiable function. (We do not assume that f is C1.) Show

that f ′ has the intermediate value property: If a < b, and s is between f ′(a) and f ′(b),

then there exists c ∈ [a, b] such that f ′(c) = s.

2. Use the previous part to show that Theorem 6.4 is still true if we replace “f is a C1

function” with “f is a differentiable function.”
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Exercise 7.3. ( ) Give an example of a differentiable function f : R → R such that

f ′(0) 6= 0 but there does not exist an open interval I containing 0 such that f is a C1

homeomorphism between I and f(I).

Exercise 7.4. ( ) Prove the inequality involving the operator norm (6.9).

Exercise 7.5. ( ) Suppose A ∈ R1×n is a row vector, i.e., A is the transpose of some

column vector u ∈ Rn. Show that ‖A‖ = |u|. (Hint: This is related to a well-known

inequality involving the dot product of two vectors.)

Exercise 7.6. ( ) Let c ∈ R and let

A =

(
0 c

0 0

)
(7.1)

Determine ‖A‖. (Note that the eigenvalues of A are 0 and 0. This exercise shows that the

eigenvalues do not determine ‖A‖.)

Exercise 7.7. ( ) (This problem requires some linear algebra.) Let A ∈ Rn×m.

(Note that A does not need to be a square matrix.) The singular values of A are the square

roots of the eigenvalues of ATA, where AT denotes the transpose of A. Show that ‖A‖ is

equal to the largest singular value of A.

See https://en.wikipedia.org/wiki/Singular_value_decomposition for more in-

formation on singular values.

Exercise 7.8. ( ) (This problem is relevant for tomorrow.) Here is a version of the

mean value theorem from single-variable calculus:

� Single-variable mean value theorem. Let f : R → R be a C1 function. For any

a, b ∈ R with a < b, there exists a c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a). (7.2)

Show that the theorem above is false if you replace f : R→ R with f : R→ R2.

8 Day 4 (Inverse/Implicit, Day 2)

8.1 Mean value inequality

For Rm → R, we have the mean value theorem (see Exercise 9.1). However, for Rm → Rn

and n ≥ 2, the mean value theorem does not hold (see Exercise 7.8). That is why we use

the following instead.
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Theorem 8.1 (Mean value inequality). Let f : Rm → Rn be a C1 function. Let a,b ∈ Rm.

Suppose that for all c ∈ Rm on the line segment joining a and b, we have ‖f ′(c)‖ ≤ M .

Then

|f(b)− f(a)| ≤M |b− a| (8.1)

Proof. Define γ : R→ Rm by γ(t) = (1−t)a+tb. Let g(t) = f(γ(t)), so by the (multivariable)

chain rule Theorem 4.14, g′(t) = f ′(γ(t))γ′(t) = f ′(γ(t))(y − x). Then

f(b)− f(a) = g(1)− g(0) =

∫ 1

0

g′(t) dt =

∫ 1

0

f ′(γ(t))(y − x) dt (8.2)

By the triangle inequality (for vector-valued integrals) followed by the inequality for the

operator norm (6.9),

|f(b)− f(a)| =
∣∣∣∣∫ 1

0

f ′(γ(t))(b− a) dt

∣∣∣∣ (8.3)

≤
∫ 1

0

|f ′(γ(t))(b− a)| dt (8.4)

≤
∫ 1

0

‖f ′(γ(t))‖|b− a| dt (8.5)

≤
∫ 1

0

M |b− a| dt (8.6)

= M |b− a| (8.7)

8.2 Banach fixed-point theorem

Definition 8.2. A subset X ⊂ Rn is closed if for every sequence (xn)∞n=1 in X, if the sequence

converges to some a ∈ Rn, then a ∈ X.

Remark 8.3. There are other ways to defined closed sets. For example, another definition

is “a set X ⊂ Rn is closed if its complement is open.” This turns out to be equivalent to the

definition above.

We only need the Banach fixed-point theorem for closed subsets of Rn, but the proof

generalizes to all complete metric spaces, so we state it in this general form.

Definition 8.4. A metric space (X, d) is complete if every Cauchy sequence in X converges

(to something in X).

Example 8.5. Closed subsets of Rn (with the standard metric d(x, y) = |x−y|) are complete

metric spaces. In contrast, the open interval (0, 1) ⊂ R is not a complete metric space.
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Definition 8.6. For a metric space (X, d), we say that a function φ : X → X is a contraction

of X into itself if there exists a c < 1 such that d(φ(x), φ(y)) ≤ cd(x, y).

Example 8.7. The function φ : R→ R given by φ(x) = 1
2
x is a contraction of R into itself.

Theorem 8.8 (Banach fixed point theorem, a.k.a. contraction mapping principle). Let (X, d)

be a complete metric space and let φ : X → X be a contraction of X into itself. Then there

exists a unique point a ∈ X such that φ(a) = a.

Furthermore, given any x0 ∈ X, define a sequence (xn)∞n=0 recursively by xn+1 = φ(xn).

Then xn → a.

Proof. We break the proof into three steps.

Step 1: We’ll show any sequence defined as above converges.

Take a starting point x0 ∈ X. Then d(xn+1, xn) = d(φ(xn), φ(xn−1)) ≤ cd(xn, xn−1),

which implies d(xn+1, xn) ≤ cnd(x1, x0). Thus if m ≤ n, then by the triangle inequality,

d(xm, xn) ≤
n−1∑
i=m

d(xi+1, xi) ≤ d(x1, x0)
n−1∑
i=m

ci ≤ d(x1, x0)
∞∑
i=m

ci ≤ d(x1, x0) ·
cm

1− c
(8.8)

which shows that (xn)n is a Cauchy sequence. Since the space (X, d) is complete, the sequence

converges.

Step 2: We’ll show that any two sequences defined as above converges to the same limit

a ∈ X.

Let x0, y0 ∈ X. Then d(xn+1, yn+1) ≤ cd(xn, yn), so d(xn, yn) ≤ cnd(x0, y0). This implies

that the sequences (xn)n and (yn)n converges to the same element of X. Let us call this

element a.

Step 3: We’ll show φ(a) = a.

Let (xn)n be a sequence defined as above. By Step 2, xn → a. Note that contractions

are continuous, so

a = lim
n→∞

xn = lim
n→∞

φ(xn−1) = φ
(

lim
n→∞

xn−1

)
= φ(a). (8.9)

8.3 Proof of the inverse function theorem, preliminary

Let us now discuss how the proof of Theorem 6.9 begins.

By a change of variables, we may assume without loss of generality that a = 0, f(0) = 0,

and f ′(0) = I. (Here, I denotes the n × n identity matrix.) To justify this more, see

Exercise 9.5
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Since f(0) = 0 and f ′(0) = I, this means f : Rn → Rn is well-approximated by the

identity function x 7→ x. If E(x) = f(x)− x denotes the “error” in this approximation, then

E′(x) = f ′(x)− I. Since E′(0) is the zero matrix, and E′ is continuous,

∃δ > 0 such that if x ∈ Rn and |x| ≤ δ, then ‖E′(x)‖ ≤ 1

2
(8.10)

This allows us to use the mean value inequality (Theorem 8.1) on E. Furthermore, because
1
2
< 1, we will then be able to apply the Banach fixed-point theorem. The details will come

tomorrow.

9 Day 4 exercises

Highly recommended: Exercise 9.3

Exercise 9.1. ( ) In contrast to Exercise 7.8, we do have the following multivariable

version of the mean value theorem when the range of the function is R. (We will not need

this in the class.)

� Multivariable mean value theorem. Let f : Rm → R be a C1 function. For any

a,b ∈ Rm, there exists a c ∈ Rm on the line segment joining a and b such that

f(b)− f(a) = ∇f(c) · (b− a) (9.1)

Using the single-variable mean value theorem (as stated in Exercise 7.8), prove the multi-

variable mean value theorem.

Hint: Some of the ideas from the proof of Theorem 8.1 work here too.

Exercise 9.2. ( ) Consider φ(x) = x2. Show that φ is a contraction of [0.4, 0.4] into itself.

Then show that φ is not a contraction of [−0.5, 0.5] into itself.

Exercise 9.3. ( ) Suppose f : R→ R is C1 and f(0) = 0. Furthermore, suppose that
1
2
≤ f ′(x) ≤ 3

2
for all x ∈ [−2, 2]. Fix z ∈ [−1, 1].

1. Show that there exists a unique c ∈ [−2, 2] such that f(c) = z.

2. Use the Banach fixed-point theorem to construct a sequence (xn)∞n=0 such that xn → c.

(Hint: Consider φ(x) = x− f(x) + z.)

Exercise 9.4. ( ) Suppose f : R → R is C1. Fix a < b. Suppose f(a) < 0 < f(b).

Furthermore, suppose that there exist 0 < k1 ≤ k2 such that k1 ≤ f ′(x) ≤ k2 for all x ∈ [a, b].

1. Show that there exists a unique c ∈ [a, b] such that f(c) = 0.
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2. Use the Banach fixed-point theorem to construct a sequence (xn)∞n=0 such that xn → c.

Exercise 9.5. ( ) Let g : Rn → Rn be a C1 function and let a ∈ Rn. Suppose det g′(a) 6= 0.

Show that there exists function f : Rn → Rn such that f(0) = 0, f ′(0) = I, and most

importantly,

∃invertible A ∈ Rn×n,∃b ∈ Rn such that g(x) = Af(x− a) + b (9.2)

This shows that if we prove the conclusion of the inverse function theorem holds for f at 0,

then we also prove the conclusion of the inverse function holds for g at a.

10 Day 5 (Inverse/Implicit, Day 3)

10.1 Proof of the inverse function theorem

Finally we get to the proof of Theorem 6.9. This is a difficult proof.

Proof of Theorem 6.9. As explained in Exercise 9.5, we may assume without loss of gener-

ality that a = 0, f(0) = 0, and f ′(0) = I. (Here, I denotes the n× n identity matrix.)

Step 1: The key inequality for this proof.

Let E(x) = f(x)− x. As explained in Section 8.3 there exists a δ > 0 such that

∀x ∈ B(0, δ), ‖E′(x)‖ ≤ 1

2
, (10.1)

where B(0, δ) = {x ∈ Rn : |x| ≤ δ}. This is the closed ball in Rn centered at 0 and with

radius δ. (Note that in this step, we also use the fact that the operator norm ‖ · ‖, viewed

as a function Rn×m → R is a continuous function.) Then by the mean value inequality

(Theorem 8.1),

∀x,y ∈ B(0, δ), |E(y)− E(x)| ≤ 1

2
|y − x| (10.2)

We will use (10.2) over and over again in this proof, so we will refer to it as the “key

inequality.”

Step 2: We’ll show that f is injective on B(0, δ).

If x,y ∈ B(0, δ), then by the key inequality (10.2) and the triangle inequality

1

2
|y − x| ≥ |E(y)− E(x)| = |(f(y)− f(x))− (y − x)| ≥ |y − x| − |f(y)− f(x)|. (10.3)

This shows that

∀x,y ∈ B(0, δ), |f(y)− f(x)| ≥ 1

2
|y − x| (10.4)
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which implies that f is injective on B(0, δ).

Step 3: We’ll show that f(B(0, δ)) contains B(0, 1
2
δ).

For z ∈ Rn, we define a function φz : Rn → Rn by

φz(x) = x− f(x) + z = z− E(x). (10.5)

Note that

x0 is a fixed point of φz ⇐⇒ φz(x0) = x0 ⇐⇒ f(x0) = z (10.6)

Thus, we would like to apply the Banach fixed point theorem (Theorem 8.8) with φz. To do

that, we will show two things about φz:

∀x,y ∈ Rn, |φz(y)− φz(x)| ≤ 1

2
|y − x| (10.7)

∀z ∈ B(0, 1
2
δ), φz(B(0, δ)) ⊂ B(0, δ). (10.8)

To prove (10.7), by the key inequality (10.2) again,

|φz(y)− φz(x)| = |E(y)− E(x)| ≤ 1

2
|y − x|. (10.9)

To prove (10.8), suppose |z| ≤ 1
2
δ and |x| ≤ δ. We need to show |φz(x)| ≤ δ. By the fact

that E(0) = 0 and the key inequality (10.2),

|E(x)| = |E(x)− E(0)| ≤ 1

2
|x| (10.10)

Then

|φz(x)| = |z− E(x)| ≤ |z|+ |E(x)| = |z|+ 1

2
|x| ≤ 1

2
δ +

1

2
δ = δ (10.11)

which proves (10.8).

Suppose z ∈ B(0, 1
2
δ). As a consequence of (10.8) and (10.7), we have shown that φz

is a contraction of B(0, δ) into itself. Furthermore, B(0, δ) is a complete metric space. By

the Banach fixed point theorem (Theorem 8.8), there is a point x0 ∈ B(0, δ) such that

φz(x0) = x0. As noted in (10.6), f(x0) = z, so z ∈ f(B(0, δ)).

Step 4: The conclusion.

Let V = B(0, 1
2
δ) = {x ∈ Rn : |x| < δ}. (Note that this is an open ball.) Let

U = f−1(V ). Then by what we have shown above, f : U → V is a bijection and it is C1. Let

g = f−1 : V → U . It only remains to show that

g′(y) = f ′(g(y))−1 for all y ∈ V. (10.12)

Note that (10.12) implies that g is C1. (Actually, here we also use the fact that the map

A 7→ A−1 is a continuous function Rn×n → Rn×n. This is not hard to show.) Exercise 11.1

asks you to prove (10.12).
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Remark 10.1. This is a difficult proof. I remember that when I saw this proof for the first

time, I did not feel like I understood anything.

Remark 10.2. Terry Tao gives a one-sentence summary of the proof in his blog post. https:

//terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-everywhere-differentiable-maps/

The sentence is in the first paragraph, and begins “Indeed, one may normalize...”

See also Theorem 2 of that blog post for a generalization of the inverse function theorem.

10.2 Implicit function theorem

As we have seen, the inverse function theorem is a statement that can be thought in terms

of the theme “functions behave like their affine approximations” (2.1). The inverse function

theorem only applies to functions Rm → Rn with m = n.

The implicit function theorem, which we will state below, applies to functions Rm → Rn

with m ≥ n. It can also be thought of as another instance of the theme (2.1). Let us start

with linear functions A : Rm → Rn with m ≥ n. In other words, A is a matrix such that the

number of columns is at least the number of rows.

Example 10.3. Suppose

A =
(

2 −6
)

(10.13)

A point in kerA = {x ∈ R2 : Ax = 0} (the kernel of A) is completely determined by its first

coordinate x1. In other words, for points in kerA, we can write x1 as a function of x2. (It is

just x1 = 3x1.) Furthermore, this is true for any other 1× 2 matrix as long as the first entry

is nonzero.

Example 10.4. Suppose

A =

3 1 4 1 5

0 0 9 2 6

0 0 0 5 3

 (10.14)

A point in kerA = {x ∈ R5 : Ax = 0} is completely determined by the coordinates x2 and

x5. In other words, for points in kerA, we can write x1, x3, x4 as functions of x2 and x5.

Example 10.5. As a generalization of Example 10.4, suppose A ∈ Rn×m and n ≥ m.

If columns i1, . . . , im of A are linearly independent, then points in kerA are completely

determined by the coordinates xi1 , . . . , xim

Now let us look at some nonlinear examples.
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Example 10.6. Consider f(x, y) = x2 +y2−1. The zero set Z = {(x, y) ∈ R2 : f(x, y) = 0}
is the unit circle.

1. At every point (x0, y0) ∈ Z with x0 6= 0, there is an open set U ⊂ R2 containing (x0, y0)

such that Z ∩ U is the graph of a function x = h(y). (Either h(y) = (1 − y2)1/2 or

h(y) = −(1− y2)1/2.)

2. At every point (x0, y0) ∈ Z with y0 6= 0, there is an open set U ⊂ R2 containing (x0, y0)

such that Z ∩ U is the graph of a function y = g(x). (Either g(x) = (1 − x2)1/2 or

g(x) = −(1− x2)1/2.)

What makes the above possible is the direction of the tangent line to Z at various points.

Note that f ′(x, y) =
(

2x 2y
)

.

Here is the implicit function theorem, stated for maps R2 → R. The statement and proof

generalize to Rm → Rn with m ≥ n with some small modifications. In the higher-dimensional

version, you need to consider linearly independent columns of f ′(x), as in Example 10.5. (See

an analysis textbook for the statements.)

Theorem 10.7 (Implicit function theorem in R2). Let f : R2 → R be a C1 function. Suppose

that f(0, 0) = (0, 0). ∂xf(0, 0) 6= 0. Then there exist two open subsets I1, I2 ⊂ R such that

(0, 0) ∈ I1 × I2, and there exists a function g : I2 → R such that

for all (x, y) ∈ I1 × I2, f(x, y) = 0 ⇐⇒ x = g(y). (10.15)

The statement of the implicit function theorem looks complicated, so you might think

the proof is as complicated as the proof of the inverse function theorem. However, we can

actually use the inverse function theorem to prove the implicit function theorem, which saves

us a lot of trouble.

Proof. See Exercise 11.3 for an outline of the proof.

Informally, a set is a k-dimensional manifold if it “locally looks k-dimensional.” For

example, a circle is a 1-dimensional manifold and a sphere is a 2-dimensional manifold. The

implicit function theorem gives sufficient condition for the zero set of a system of equations

to be a k-dimensional manifold.

Corollary 10.8. Let f : R2 → R be a C1 function. Let Z = {(x, y) ∈ R2 : f(x, y) = 0}, and

suppose that f ′(x, y) 6= 0 for all (x, y) ∈ Z. Then Z is a 1-dimensional submanifold of R2.

The result above generalizes to higher dimensions.
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10.3 Conclusion of the class

Multivariable calculus is often taught without linear algebra as a prerequisite. The goal

of this class was to show you how linear algebra actually plays a key role in multivariable

calculus, starting with the definition of the derivative.

11 Day 5 exercises

Exercise 11.1. ( ) Finish Step 4 in the proof of Theorem 6.9. Here are some ideas.

1. First show that g is continuous. Hint: Use (10.4).

2. Now show (10.12). To do this, let Eg(k) be defined by

g(y + k) = g(y) + f ′(g(y))−1k + Eg(k) (11.1)

and show

lim
k→0

|Eg(k)|
|k|

= 0 (11.2)

Hint: Some of the ideas in the proof of Theorem 6.4 may be useful. Also, use (10.4).

Exercise 11.2. ( ) Suppose f : Rn → Rn satisfies det f ′(x) 6= 0 for all x ∈ Rn. Show that

f is an open mapping, i.e., f(U) is open for all open sets U ⊂ Rn.

Exercise 11.3. ( ) Here is an outline of the proof of the implicit function theorem

Theorem 10.7. Fill in the details.

1. Define F : R2 → R2 by F(x, y) = (f(x, y), y) and show that det F′(0, 0) 6= 0.

2. Apply the inverse function theorem to F to get an inverse map G(s, t) = (G1(s, t), G2(s, t))

3. Show that g(y) = G1(0, y) satisfies (10.15).
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