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5 Day 2 exercises 16

1 Introduction

1.1 Course blurb

Let K0 ⊂ R2 be the unit square. Divide K0 into 16 squares of equal size, and let K1 ⊂ K0 be

the union of the four corner squares. Repeat the same procedure on each of the four squares

of K1 to get K2 (a union of 16 squares), and so on. We define the four corner Cantor set to

be the limit set K =
⋂∞
n=0Kn.

In this class, we will discuss some interesting properties of the projections of the four

corner Cantor set, including connections to the following number theory fact: If m and n are

odd integers, then m/n can be written as the ratio of two numbers of the form
∑`

j=0 εj4
j,

where εj ∈ {−1, 0, 1}. (Incidentally, this number theory fact is proved in a paper called “An

awful problem about integers in base four.”)

1.2 References

1. J.H. Loxton, A.J. van der Poorten, An awful problem about integers in base four. Acta

Arith., 49 (1987), pp. 193-203

2. Mattila’s Fourier analysis and Hausdorff dimension, Chapter 10

3. Bishop–Peres’s Fractals in probability and analysis, Chapter 9

1.3 Guide for these notes

For the exercises, here is the difficulty scale:

� : easy

� : medium

� : hard

The words “easy,” “medium,” and “hard” are not well-defined. Don’t be afraid of difficult

problems! It’s by struggling with these exercises that you really learn.

Things labeled “Fun fact” are not needed for the class.
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2 Day 1

2.1 Introduction

In this class, we will begin with a question in fractal geometry about projections of fractals.

That will lead us to a number theory question. To solve that question, we will use Fourier

analysis on cyclic groups (or if you prefer, generating functions and roots of unity). Because

of time, I won’t be able to prove everything that I state. Instead, the plan of this class is to

show how these topics are related.

2.2 Projections

First we introduce some notation from additive combinatorics.

Definition 2.1. Let A,B ⊂ R and let α ∈ R. We define the sum-set A + B and the dilate

αA as follows:

A+B = {a+ b : a ∈ A, b ∈ B} (2.1)

αA = {αa : a ∈ A} (2.2)

Remark 2.2. Note that in general, A+ A 6= 2A.

Now we define projection.

Definition 2.3. For α ∈ R, we define projα : R2 → R by projα(x, y) = x+ αy. We refer to

α as the direction of the projection projα.

(For this paragraph, it helps to draw a picture!) Here is a geometric interpretation.

Imagine the x-axis is the “ground.” Suppose the “sun” is “infinitely far away,” so its rays

are all parallel to each other. If the slope of the of the rays is −1/α, then the point (x, y)

casts a shadow on the point (x + αy, 0) on the x-axis. The x-coordinate of this is precisely

projα(x, y).

For S ⊂ R2,

projα S = {x+ αy : (x, y) ∈ S} (2.3)

Note that if S is a subset of the upper-half plane, its shadow (as desribed above) on the

x-axis is projα S.

Example 2.4. S = A×B, then its projection is projα S = A+αB = {a+αb : a ∈ A, b ∈ B}.

Remark 2.5. The projections we have described geometrically above are not orthogonal

projections, but they are parallel projections.
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2.3 The middle-half Cantor set

Let C0 = [0, 1]. To form C1, remove the middle half of C0. Now C2 is the union of two

intervals of length 1/4. To form C2, remove the middle half of each interval of C1. Repeat

this way to construct Cn for all n ∈ N0. (N0 = {0, 1, 2, . . .}.) For example

C0 = [0, 1] (2.4)

C1 = [0
4
, 1
4
] ∪ [3

4
, 4
4
] (2.5)

C2 = [ 0
16
, 1
16

] ∪ [ 3
16
, 4
16

] ∪ [12
16
, 13
16

] ∪ [15
16
, 16
16

] (2.6)

Define the middle-half Cantor set to be C =
⋂∞
n=0Cn. (In other words, x ∈ C if and only if

∀n ∈ N0, x ∈ Cn.) Another way to describe C is

C = {x ∈ [0, 1] : x has a base 4 expansion with only 0s and 3s}. (2.7)

We will often refer to C as just the “Cantor set” since we are not considering other types of

Cantor sets.

Example 2.6. Here are some examples:

1. 3
4

= 0.34, so 3
4
∈ C.

2. 1
4

= (0.03333 . . .)4, so 1
4
∈ C. (This is despite the fact that 1

4
= 0.14.)

3. 1
5

= (0.030303 . . .)4, so 1
5
∈ C.

4. The only ways of writing 1
2

in base 4 are (0.13333 . . .)4 and 0.24, so 1
2
6∈ C.

An interesting property of the middle-half Cantor set is that it has “zero length.”

Definition 2.7. A set S ⊂ R has measure zero if

∀ε > 0,∃ intervals (Ii)
∞
i=1 s.t. S ⊂

⋃
i

Ii and
∞∑
i=1

(length of Ii) < ε. (2.8)

(It does not matter if we take open or closed intervals.)

Theorem 2.8. C has measure zero.

Proof. Cn can be covered by 2n intervals, each of length 4−n. The total length is (2/4)n.

Since C ⊂ Cn for all n, this completes the proof.

Furthermore, the Cantor set C has the same cardinality as R. (See Exercise 3.1.) Thus,

C is “large” in the sense of cardinality but “small” in the sense of measure.
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2.4 The four corner Cantor set

We also consider a 2-dimensional version of C by taking the direct product. Note that

C × C =
⋂∞
n=0Cn × Cn. We can also describe C × C as follows. First C0 × C0 is the unit

square. Divide the unit square into 16 squares of equal size. Then C1 × C1 is the union of

the four corner squares. Repeat the same procedure on each of the four squares of C1 × C1

to get C2 × C2 (a union of 16 squares), and so on.

Now we look at projections projα(C ×C), or equivalently, sum-sets C +αC. Let us first

consider α = 1. Note that proj1(C0 × C0) = [0, 2]. However, in the limit, we lose “most” of

the points in [0, 2].

Theorem 2.9. proj1(C × C) = C + C has measure zero.

Proof. Note that two of the four squares of C1×C1 overlap each other exactly when projected

in direction 1. Thus, for every n, Cn + Cn can be covered by 3n intervals, each of length

2 · 4−n. The total length is 2 · (3/4)n.

To be precise, we give the following definition.

Definition 2.10. Two squares S, T ⊂ Cn × Cn overlap exactly when projected in direction

α if projα S = projα T . (The two squares S and T must each be one of the 4n squares in

Cn × Cn of slide length 4−n.)

The reason for the exponential decay factor of (3/4)n in the proof above is that two

squares in C1 × C1 overlapped exactly when projected in direction 1. In general, since

Cn × Cn is the union of 4n squares each of side length 4−n, any exact overlap will lead to

exponential decay. This idea is made more precise in Exercise 3.3.

If we change the projection direction from 1 to 2, then we avoid overlap.

Theorem 2.11. proj2(C × C) = C + 2C = [0, 3]

Proof. Clearly, proj2(C0×C0) = [0, 3]. By drawing a picture, we can also see that proj2(C1×
C1) = proj2(C0×C0). Informally, this says that even though we are removing squares to get

from C0×C0 to C1×C1, the remaining squares are still “enough to cover everything” in the

shadow. Furthermore, C2×C2 is created from C1×C1 the same way that C1×C1 was created

from C0 ×C0, so proj2(C2 ×C2) = proj2(C1 ×C1). By induction proj2(Cn ×Cn) = [0, 3] for

all n, and taking the limit gives proj2(C × C) = [0, 3].

Thus, proj1(C × C) and proj2(C × C) are very different. One of the questions we will

study in this class is the following, which turns out to be closely related to a number theory

question.

Question 2.12. Let α ∈ R. What can we say about projα(C × C) = C + αC?
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Fun fact 2.13. Define

S = {α ∈ R : C + αC does not have measure zero} (2.9)

The following is true:

S has measure zero. (2.10)

In fact, we can say more:

S = {2k p
q

: k, p, q are all odd integers}. (2.11)

Furthermore, (2.10) implies the existence of Kakeya sets (a.k.a. Besicovitch sets), which

are sets in the plane with area zero and that contain a line in every direction. (Sometimes it

is defined without the area zero condition, and sometimes it is defined with “line segment”

in place of “line.” There is no definition that is universally agreed upon.) We do not have

time to talk about this more unfortunately.

(See Mattila’s Fourier analysis and Hausdorff dimension, Chapter 10 or Bishop–Peres’s

Fractals in probability and analysis, Chapter 9 for more information, including proofs.)

2.5 A discretization of the middle-half Cantor set

Now we introduce a discretization of the middle-half Cantor set C. For n ∈ N0, we define

Dn = {0, 1}+ {0, 4}+ {0, 42}+ · · ·+ {0, 4n−1} (2.12)

= {x ∈ R : x = (x1x2 · · ·xn)4 for some x1, . . . , xn ∈ {0, 1}}. (2.13)

For example,

D0 = {0} (2.14)

D1 = {0, 1} (2.15)

D2 = {0, 1, 4, 5} (2.16)

D3 = {0, 1, 4, 5, 16, 17, 20, 21} (2.17)

We can relate Dn to Cn as follows. Recall that Cn is a union of 2n intervals, each of

length 4−n. Similar to (2.7), we have

{x ∈ [0, 1] : x = (0.x1x2 · · ·xn)4 for some x1, . . . , xn ∈ {0, 3}}
= {left endpoints of intervals in Cn}.

(2.18)

Thus, if we rescale by 1
3
, the allowed digits are now 0 and 1:

{x ∈ [0, 1] : x = (0.x1x2 · · ·xn)4 for some x1, . . . , xn ∈ {0, 1}}
= {left endpoints of intervals in 1

3
Cn}

(2.19)
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We can then rescale by 4n to shift all the digits:

Dn = {x ∈ R : x = (x1x2 · · ·xn)4 for some x1, . . . , xn ∈ {0, 1}}
= {left endpoints of intervals in 4n

3
Cn}

(2.20)

3 Day 1 exercises

Highly recommended: Exercise 3.3, Exercise 3.4

Exercise 3.1. ( ) Show that C has the same cardinality as R. (Hint: Use (2.7).)

Exercise 3.2. ( ) Use (2.7) to give another proof of Theorem 2.11. (Hint: It’s easier to

show that 1
3
C + 1

3
C = [0, 1])

Exercise 3.3. ( ) Let α ∈ R. Suppose that there exists a n ∈ N such that two squares

in Cn × Cn overlap exactly when projected in direction α. Then projα(C × C) has measure

zero.

(Hint: Consider projα(Ckn × Ckn) as k →∞.)

Exercise 3.4. ( ) Recall that D2 + 3D2 = {a + 3b : a, b ∈ D2}. There are 16 pairs

(a, b) ∈ D2 ×D2. How many numbers are in the sum-set D2 + 3D2? What does this imply

about proj3(C2 × C2)? What does this imply about proj3(C × C)?

Exercise 3.5. ( ) Define the middle-third Cantor set C̃ =
⋂∞
n=0 C̃n like the middle-half

Cantor set in Section 2.3, except that we remove the middle third instead of the middle half

in each step. For example,

C̃0 = [0, 1] (3.1)

C̃1 = [0
3
, 1
3
] ∪ [2

3
, 3
3
] (3.2)

C̃2 = [0
9
, 1
9
] ∪ [2

9
, 3
9
] ∪ [6

9
, 7
9
] ∪ [8

9
, 9
9
] (3.3)

Alternatively,

C̃ = {x ∈ [0, 1] : x has a base 3 expansion with only 0s and 2s}. (3.4)

1. Show that C̃ has measure zero.

2. Show that C̃ + C̃ = [0, 2].

3. Show that C̃ has the same cardinality as R.

Exercise 3.6. ( ) For the middle-third Cantor set C̃ (see Exercise 3.5), find a non-

degenerate interval I ⊂ R such that C +αC has measure zero for all α ∈ I. (Note: Because

of (2.10), this is impossible for the middle-half Cantor set.)

7



Exercise 3.7. ( ) Define the middle-3/5 Cantor set by C̃ =
⋂∞
n=0 C̃n like the middle-

half Cantor set in Section 2.3, except that we remove the middle 3/5 instead of the middle

half in each step. For example,

C̃0 = [0, 1] (3.5)

C̃1 = [0
5
, 1
5
] ∪ [4

5
, 5
5
] (3.6)

C̃2 = [ 0
25
, 1
25

] ∪ [ 4
25
, 5
25

] ∪ [20
25
, 21
25

] ∪ [24
25
, 25
25

] (3.7)

Show that for any α ∈ R, C̃ + αC̃ has measure zero.

4 Day 2

4.1 Collisions and a number theory question

Definition 4.1. We say “A + B has a collision” if there exist a, a′ ∈ A and b, b′ ∈ B such

that a + b = a′ + b′ and (a, b) 6= (a′, b′). (Note that it is not the set A + B itself that has a

collision. It is the process of adding the two sets A and B that has a collision.) We make

similar definitions for “A+B + C has a collision,” “A+ 2B has a collision,” etc.

For finite sets A and B, note that A+B has a collision if and only if |A+B| < |A||B|.

Example 4.2. {0, 1}+{0, 1, 2} has a collision, while {0, 1}+{0, 2} does not have a collision.

(Note that in both cases, the sum is {0, 1, 2, 3}.)

We now relate collisions to the size of the projections projα(C × C).

Theorem 4.3. Let α ∈ R. Two squares in Cn × Cn overlap exactly when projected in

direction α if and only if Dn + αDn has a collision.

Proof. By the definition of Dn (see (2.20)), we have

{bottom-left corner of the squares in Cn × Cn} = 3
4n
Dn × 3

4n
Dn. (4.1)

Take two different squares from Cn × Cn. Let their bottom-left corners be ( 3
4n
a, 3

4n
b) and

( 3
4n
c, 3

4n
d), where a, b, c, d ∈ Dn. The projection projα sends these two points to 3

4n
(a + αb)

and 3
4n

(c+αd). Thus, these two squares overlap exactly if and only if a+αb = c+αd. That

is precisely the condition that Dn + αDn has a collision.

The goal of the remainder of the class is to prove the following theorem.

Theorem 4.4. If α is an odd integer, then there exists a n ∈ N such that Dn + αDn has a

collision.
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4.2 An example: α = 7

4.2.1 Direct computation

Note that Dn+1 = Dn + 4nD1, which implies

Dn+1 + 7Dn+1 = Dn + 7Dn + 4n(D1 + 7D1) (4.2)

This gives us a way to recursively compute Dn + 7Dn. Our base case is

D1 + 7D1 = {0, 1}+ {0, 7} = {0, 1, 7, 8}. (4.3)

Then

D2 + 7D2 = D1 + 7D1 + 4(D1 + 7D1) = {0, 1, 7, 8}+ {0, 4, 28, 32} (4.4)

We can systematically calculate the 16 sums in (4.4) by making a table. See Figure 4.1. The

header column contains the elements of 4(D1 + 7D1). The header row contains the elements

of D1 + 7D1 grouped by congruence class modulo 4.

0, 8 1 7

4 · 0 = 0 0, 8 1 7

4 · 1 = 4 4, 12 5 11

4 · 7 = 28 28, 36 29 35

4 · 8 = 32 32, 40 33 39

Figure 4.1: This table calculates the sum-set (D1 + 7D1) + 4(D1 + 7D1).

Since all the elements of 4(D1 + 7D1) are congruent to 0 modulo 4, two numbers in

different columns (i.e., separated a vertical line) of Figure 4.1 are not congruent modulo 4

and hence cannot be equal to each other.

Note that all 16 numbers in (4.1) are different. This means we have not found a collision

yet.

Now we use the relation D3 + 7D3 = D2 + 7D2 + 42(D1 + 7D1). See Figure 4.2. The

header column contains the elements of 42(D1 +7D1). The header row contains the elements

of D2 + 7D2 grouped by congruence class modulo 16.

Similar to above, here, two numbers in different columns are not congruent modulo 16

and hence cannot be equal to each other.

We notice that in the {12, 28} column, the number 28 shows up twice. This means that

there are two ways obtain 28, which, by retracing the calculations, are

28 = 0 + 7 · 4 = (1 + 4 + 42) + 7 · 1, (4.5)

This gives a collision for D2 + 7D2. (Similarly, there are two ways to get 140.)
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0, 32 4, 36 8, 40 12, 28 1, 33 5 29 7, 39 11 35

42 · 0 = 0 12, 28

42 · 1 = 16 28, 42

42 · 7 = 112 124, 140

42 · 8 = 128 140, 156

Figure 4.2: This table calculates the sum-set (D2 + 7D2) + 42(D1 + 7D1).

4.2.2 Simplification of the calculations

Let us analyze the calculations above to see if there is a way to reduce the amount of

calculation as well as to avoid adding and multiplying big numbers.

1. To get the column for {0, 8} in Figure 4.1 (corresponding to 0 mod 4), we computed

{0, 8} + 4(D1 + 7D1). But we could have factored out a 4 from everything before

calculating the sum set:

{0, 8}+ 4(D1 + 7D1) = 4({0, 2}+D1 + 7D1) (4.6)

Now the sum-set has smaller numbers:

{0, 2}+D1 + 7D1 = {0, 2}+ {0, 1, 7, 8} = {0, 1, 2, 3, 7, 8, 9, 10} (4.7)

From this, we see there are no collisions in (4.6).

2. Similarly, to get the column for {0, 32} in Figure 4.2 (corresponding to 0 mod 16), we

have

{0, 32}+ 42(D1 + 7D1) = 16({0, 2}+D1 + 7D1). (4.8)

Once again, the sum-set (4.7) appears. Thus, without having to do any more calcula-

tions, we know there are no collisions in (4.8).

3. Now consider the column {4, 36} in Figure 4.2 (corresponding to 4 mod 16).

{4, 36}+ 42(D1 + 7D1) = 4 + {0, 32}+ 42(D1 + 7D1) (4.9)

= 4 + 16({0, 2}+D1 + 7D1) (4.10)

It’s the same computation again! There are no collisions here either. (When x ∈ R
and A ⊂ R, x+ A is defined to be {x}+ A.)
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4. Now let’s consider the column {12, 28} in Figure 4.2 (corresponding to 12 mod 16).

{12, 28}+ 42(D1 + 7D1) = 12 + {0, 16}+ 42(D1 + 7D1) (4.11)

= 12 + 16({0, 1}+D1 + 7D1) (4.12)

Finally, we have something different. Since

{0, 1}+D1 + 7D1 = {0, 1}+ {0, 1, 7, 8} = {0, 1, 2, 7, 8, 9}, (4.13)

this sum set only has 6 numbers, so there are collisions. Thus (4.11) has collisions too.

4.3 The “type” of a congruence class

Recall Dn+1 + 7Dn+1 = Dn + 7Dn + 4n(D1 + 7D1). If we use the RHS to look for collisions

in Dn+1 + 7Dn+1, we can partition Dn + 7Dn into equivalence classes modulo 4n.

Suppose {s1, . . . , sm} ⊂ Dn + 7Dn is one such equivalence class with s1 < · · · < sm. In

particular, s1 ≡ · · · ≡ sm (mod 4n). Then there are integers 0 = t1 < · · · < tm such that

si = s1 + 4nti. Then

{s1, . . . , sm}+ 4n(D1 + 7D1) = s1 + 4n({t1, . . . , tm}+D1 + 7D1) (4.14)

Thus, we say the set {s1, . . . , sm} ⊂ Dn + 7Dn is of type {t1, . . . , tm}. Here is the general

definition.

Definition 4.5. Fix α. Fix n ∈ N and k ∈ Z/4nZ. Let

Sn,k = {x ∈ Dn + αDn : x ≡ k (mod 4n)} (4.15)

and let minSnk
be the smallest element of Sn,k. Let

T =
Sn,k − (minSn,k)

4n
⊂ Z (4.16)

Then we say the set Sn,k ⊂ Dn + αDn is of type T .

Example 4.6. Take a look again at the examples in Section 4.2.2.

1. The set {0, 8} ⊂ D1 + 7D1 is of type {0, 2}.

2. The set {1} ⊂ D1 + 7D1 is of type {0}.

3. The set {7} ⊂ D1 + 7D1 is of type {0}.

4. The sets {0, 32}, {4, 36}, {8, 40}, {1, 33}, {7, 39} ⊂ D2 + 7D2 are all of type {0, 2}.
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5. The set {12, 28} ⊂ D2 + 7D2 is of type {0, 1}.

6. The set {5}, {29}, {11}, {35} ⊂ D2 + 7D2 are all of type {0}.

Lemma 4.7. Fix α. Then there are finitely many types that can appear as n and k range

over all possible values.

Proof. The maximum element of Dn is 1 + 4 + 42 + · · ·+ 4n−1 = 4n−1
3

. Thus, the maximum

element of Dn + αDn is

(1 + α)
4n − 1

3
(4.17)

Thus, for every type arising from Dn + αDn, the maximum element is

≤ (1 + α)
4n − 1

3
· 1

4n
<

1 + α

3
. (4.18)

This means that every type is a subset of Z ∩ [0, 1+α
3

).

Example 4.8. From Figure 4.1, we see that the set {0, 8} ⊂ D1 + 7D1 (which is of type

{0, 2}) “generates” the sets {0, 32}, {4, 36}, {8, 40}, {12, 28} ⊂ D2 + 7D2. The first three are

of type {0, 2} and the last is of type {0, 1}.
Another way to see this is to observe that the congruence classes modulo 4 of {0, 2} +

D1 + 7D1 are {0, 8}, {1, 9}, {2, 10}, {3, 7}. The first three are of type {0, 2} and the last is

of type {0, 1}. (We already calculated this sum-set in (4.7).)

The following lemma says that you can use types to “generates” more types. It may be

helpful to consider n = 1 and look at Example 4.8.

Lemma 4.9. Fix α. Fix m and n. Let T be a type that arises in Dm + αDm. Then the

congruence classes mod 4n of T + Dn + αDn give rise to types that also appear as types of

congruence classes mod 4m+n of Dm+n + αDm+n.

More precisely, let k ∈ {0, . . . , 4m − 1} and let Sm,k be as in (4.15). Suppose Sm,k has

type T , so that Sm,k = (minSm,k) + 4mT . Then for any ` ∈ {0, . . . , 4n − 1},

Sm+n, k+4m` = (minSm,k) + 4m{x ∈ T +Dn + αDn : x ≡ ` (mod 4n)}. (4.19)

Proof. The statement of the lemma looks very complicated, but the result follows from

unpacking all the definitions and using the recurrence relation

Dm+n + αDm+n = Dm + αDm + 4m(Dn + αDn), (4.20)

which follows from Dm+n = Dm + 4mDn.
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4.4 “Fourier analysis on cyclic groups”

4.4.1 The generating function for Dn

For a finite set S ⊂ N0, define φS(x) =
∑

s∈S x
s. Generating functions are a useful way of

studying sum-sets. For example, the fact that D2 = {0, 1, 4, 5} = {0, 1} + {0, 4} and that

there are no collisions can be expressed by:

φD2(x) = 1 + x+ x4 + x5 = (1 + x)(1 + x4) (4.21)

In general,

if S + T has no collisions, then φS+T (x) = φS(x)φT (x). (4.22)

Similarly, by noting that there are no collisions in (2.12), we have

φDn(x) = (1 + x)(1 + x4) · · · (1 + x4
n−1

) =
n−1∏
j=0

(1 + x4
j

) (4.23)

It is also clear from the definition of generating function that

φαDn(x) = φDn(xα) =
n−1∏
j=0

(1 + xα4
j

) (4.24)

4.4.2 Roots of unity

For n ∈ N, we say a complex number z is a nth root of unity if zn = 1. For example, there are

four 4th roots of unity: 1, i,−1,−i. See https://en.wikipedia.org/wiki/Root_of_unity

for more on roots of unity.

It turns out that when S ⊂ N0 has some special properties, then we can say something

about the roots of its generating function φS(x).

Lemma 4.10. Let S ⊂ N0 be a finite set. Suppose S has the same number of elements in

each congruence class modulo 4, i.e.,

|S0| = |S1| = |S2| = |S3|, where Sk = {x ∈ S : x ≡ k (mod 4)} (4.25)

Then

φS(i) = φS(−1) = φS(−i) = 0 (4.26)

where i =
√
−1.
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Proof. Note that

φS(x) = φS0(x) + φS1(x) + φS2(x) + φS3(x) (4.27)

Also, if m ≡ n (mod 4), then im = in . Thus,

φSk
(i) =

∑
s∈Sk

is =
∑
s∈Sk

ik = |Sk|ik (4.28)

which implies

φS(i) = |S0|i0 + |S1|i1 + |S2|i2 + |S3|i3 = |S0|(i0 + i1 + i2 + i3) = 0 (4.29)

The proofs that φS(−1) = 0 and φS(−i) = 0 are similar.

Here is a generalization of Lemma 4.10.

Lemma 4.11. Let S ⊂ N0 be a finite set and let n ∈ N. Suppose S has the same number of

elements in each congruence class modulo n. Then

φS(ωk) = 0 for all k ∈ {1, 2, . . . , n− 1}, (4.30)

where

ω = e2πi/n = cos 2π
n

+ i sin 2π
n
. (4.31)

Proof. The argument is similar to the proof of Lemma 4.10 but in place of i0+i1+i2+i3 = 0,

it uses the following fact : Let ω ∈ C be defined as in (4.31). Then

If k ∈ Z is not a multiple of n, then
n−1∑
j=0

ωkj = 1 + ωk + ω2k + · · ·+ ω(n−1)k = 0. (4.32)

You are asked to prove (4.32) in Exercise 5.3

4.4.3 Fourier analysis?

One of the fundamental theorems in Fourier analysis on Z/nZ is that every function f :

Z/nZ→ C. has a Fourier series, i.e., f(x) =
∑

k∈Z/nZ ake
2πikx/n for some ak ∈ C. The topics

presented above can be introduced using Fourier analysis, but we do not take that approach

in this class.
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4.5 The proof of Theorem 4.4

Fix an odd number α ∈ Z. Because there are only finitely many types (by Lemma 4.7),

there is a type T ⊂ N0 of maximal cardinality. (It may not be unique.)

Lemma 4.12. Fix an odd number α ∈ Z. Let T ⊂ N0 be a type of maximal cardinality and

let n ∈ N. Suppose that T +Dn + αDn has no collisions. Then:

φT (ωk) = 0 for all odd k ∈ {1, 2, . . . , 4n − 1} (4.33)

where

ω = e2πi/4
n

. (4.34)

Proof. From the hypotheses of the lemma, we have:

1. T +Dn + αDn has no collisions, so |T +Dn + αDn| = |T ||Dn||αDn| = |T |4n.

2. T +Dn+αDn cannot have a congruence class modulo 4n with more than |T | elements.

This is because the congruence classes modulo 4n of T + Dn + αDn also give rise to

types (see Lemma 4.9), and no type can have cardinality greater than T .

These two observations imply that each congruence class modulo 4n of T + Dn + αDn has

exactly |T | elements. Thus, by Lemma 4.11,

φT+Dn+αDn(ωk) = 0 for all k ∈ {1, 2, . . . , 4n − 1}, (4.35)

where ω = e2πi/4
n
.

Since T +Dn + αDn has no collisions, we have

φT+Dn+αDn(x) = φT (x)φDn(x)φαDn(x) (4.36)

By (4.23) and (4.24)

φDn(x)φαDn(x) =
n−1∏
j=0

(1 + x4
j

)(1 + xα4
j

) (4.37)

By using the factorization above, we see that

φDn(ωk)φαDn(ωk) 6= 0 for all odd k ∈ {1, 2, . . . , 4n − 1}. (4.38)

(This is where we use the fact that α is odd.) Combining (4.35), (4.36), and (4.38) finishes

the proof of this lemma.
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Now we have everything we need to prove Theorem 4.4. Let α be an odd number and

suppose for contradiction that Dn + αDn has no collisions for all n. Let T ⊂ N0 be a type

of maximal cardinality. Then by Lemma 4.9, T + Dn + αDn has no collisions for all n. By

Lemma 4.12,

φT (e2πik/4
n

) = 0 for all n ∈ N and all odd k ∈ {1, 2, . . . , 4n − 1} (4.39)

Note that the numbers e2πik/4
n

are distinct for different values for n and k. Thus, we have

shown that T has infinitely many roots, which is a contradiction. This completes the proof

of Theorem 4.4.

4.6 A more precise theorem

The following is a characterization of the rational numbers α for which collisions occur.

Theorem 4.13. Let α ∈ Q \ {0}. Suppose α = 2k p
q
, where k ∈ Z and p and q are odd

integers.

1. If k is even, then there exists a n ∈ N such that Dn + αDn has a collision.

2. If k is odd, then for all n ∈ N, Dn + αDn does not have a collision.

The proof of Theorem 4.4 that we gave can be adapted to prove part 1 of Theorem 4.13.

You are asked to verify this in Exercise 5.7.

You are asked to prove part 2 of Theorem 4.13 in Exercise 5.8. This part only uses some

modular arithmetic.

5 Day 2 exercises

Exercise 5.1. ( ) This problem gives a more concise way of stating the condition that a

collision occurs. Let D =
⋃∞
n=0Dn, i.e., D is the set of nonnegative integers whose base 4

expansion has only 0s and 1s. (There are no constraints on the number of digits.) Then

define

D −D
D −D

=

{
a− b
c− d

: a, b, c, d ∈ D
}
. (5.1)

Show that α ∈ D−D
D−D if and only if there exists a n ∈ N such that Dn + αDn has a collision.

Exercise 5.2. ( ) Use the same ideas as in Section 4.2 to find the following collision for

D3 + 9D3:

42 + 9(1 + 4) = 1 + 4 + 43 + 9(0) (5.2)
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Exercise 5.3. ( ) Prove (4.32). Hint: The sum is a geometric series.

Exercise 5.4. ( ) Let f(x) =
∑∞

n=0 anx
n, where the sum is finite. Show

f(1) + f(i) + f(−1) + f(−i)
4

= a0 + a4 + a8 + · · · (5.3)

Is there a similar way to obtain a1 + a5 + a9 + · · · ?

Exercise 5.5. ( ) Let f(x) =
∑∞

n=0 anx
n, where the sum is finite. Suppose f(i) = f(−i) =

0. Show that a0 + a4 + a8 + · · · = a2 + a6 + a10 + · · · . There are at least two different ways

of doing this

1. f(i) = f(−i) = 0 implies x− i and x+ i are both factors of x.

2. Just prove it directly from the expressions for f(i) and f(−i).

Exercise 5.6. ( ) Let n ∈ N, and let ω = e2πi/(2n) be a primitive 2n-th root of unity.

Let f =
∑∞

j=0 ajx
j. For k ∈ Z/2nZ, let

bk =
∑

j≡k (mod 2n)

aj = ak + a2n+k + a4n+k + · · · (5.4)

Suppose f(ωk) = 0 for all odd k.

1. Show that b0 = bn.

2. Show that bk = bn+k for all k.

(Note that this implies the previous exercise by setting n = 2.)

Exercise 5.7. ( ) Prove part 1 of Theorem 4.13. (Hint: Make some changes to the

proof of Theorem 4.4.)

Exercise 5.8. ( ) Prove part 2 of Theorem 4.13. (Hint: Use modular arithmetic.)
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