
Sparsest cut

Alan Chang

Mathcamp 2021 Week 1

Contents

1 Introduction 3

1.1 Course blurb . 3

1.2 References . 3

1.3 Guide for these notes . 4

2 Day 1 4

2.1 Introduction . 4

2.2 Graphs . 4

2.3 Cuts . 5

2.3.1 Minimum cut (or min-cut) . 6

2.3.2 Maximum cut (or max-cut) . 6

2.3.3 Sparsest cut . 6

2.4 Algorithms and running-time efficiency . 7

2.5 Linear programming . 8

2.5.1 Algorithms . 10

2.6 A reformulation of min-cut . 11

2.7 The LP relaxation of min-cut – part1 . 12

3 Day 1 exercises 12

4 Day 2 15

4.1 The LP relaxation of min-cut – part 2 . 15

4.2 From the LP relaxation back to min-cut, the easy way 16

4.3 Min-cut and its LP relaxation have the same minimum value 17

5 Day 2 exercises 20

1

6 Day 3 21

6.1 Rounding the LP-relaxation of min-cut . 21

6.2 Summary of our min-cut algorithm . 22

6.3 Max-cut . 22

6.3.1 A randomized 1
2
-approximation algorithm for max-cut 23

6.4 Metrics and metric spaces . 24

6.5 The spaces `n1 and `1 . 25

6.6 Pseudometrics . 25

7 Day 3 exercises 26

8 Day 4 28

8.1 Examples of pseudometrics . 28

8.2 Cut-cone representation of `1 pseudometrics 29

8.3 Sparsest cut . 30

8.4 A reformulation of sparsest cut . 31

8.5 Three minimization problems related to sparsest cut 33

9 Day 4 exercises 34

10 Day 5 35

10.1 Metric embeddings . 35

10.2 Rounding the Leighton–Rao LP . 37

10.3 Bourgain’s theorem . 37

10.4 Proof of the O(log |V |)-approximation algorithm 38

10.5 Sharpness of this approximation algorithm 39

10.6 End of class remark . 41

10.7 Bonus: Better approximation algorithms for sparsest cut 42

11 Day 5 exercises 43

12 Acknowledgments 44

2

1 Introduction

1.1 Course blurb

The sparsest cut problem asks the following: Given a (finite simple undirected) graph G,

find a subset S of the vertices that minimizes
number of edges with one endpoint in S and one endpoint in Sc

min(number of vertices in S, number of vertices in Sc)
. (1.1)

The point of the denominator is to try to balance the sizes of S and Sc. You can think of

sparsest cut as a discrete analogue of the isoperimetric problem.

Is there an efficient way to find the minimum? The short answer is “probably not,”

but fortunately, there is an efficient way to approximate the solution: if G has N vertices,

then there is an algorithm that gives you a subset S which does not necessarily attain the

minimum, but it will not be too far off. In particular, it will be within a factor of logN of

the minimum.

In this class, we will introduce the algorithm and then discuss why this algorithm produces

good approximations. A key part of the proof is connecting the sparsest cut problem to

a fundamental question about discrete geometric spaces. If there is time, we will briefly

mention how the discrete 5-dimensional Heisenberg group plays a role in a better (but more

difficult) approximation algorithm for sparsest cut. These are just some of the many examples

of the connections between theoretical computer science and metric geometry.

Prerequisites: There are no official prerequisites for this class. In particular, you do

not need to have any background in theoretical computer science or graph theory. We will

introduce many simple but new ideas rather quickly, which is why this is a 3-chili class.

Class format: I will give lectures using Google Jamboard, and I will screen-share Jam-

board from my tablet. If you’d like, you can open up Jamboard in your browser to browse

through previous slides.

1.2 References

1. Matoušek, Lectures in discrete geometry, Chapter 15. The book was published in

2002. A revised version of Chapter 15 is available on the author’s webpage: https:

//kam.mff.cuni.cz/~matousek/dg.html. This version covers new developments up

to 2005.

2. Yury Makarychev’s notes for his Computational and Metric Geometry course: https:

//home.ttic.edu/~yury/courses/geom2019/

3. Luca Trevisan’s notes for his Graph Partitioning and Expanders course: https://

lucatrevisan.wordpress.com/lecture-notes/

3

https://kam.mff.cuni.cz/~matousek/dg.html
https://kam.mff.cuni.cz/~matousek/dg.html
https://home.ttic.edu/~yury/courses/geom2019/
https://home.ttic.edu/~yury/courses/geom2019/
https://lucatrevisan.wordpress.com/lecture-notes/
https://lucatrevisan.wordpress.com/lecture-notes/

1.3 Guide for these notes

For the exercises, here is the difficulty scale:

� : easy

� : medium

� : hard

The words “easy,” “medium,” and “hard” are not well-defined. Don’t be afraid of difficult

problems! It’s by struggling with these exercises that you really learn.

Things labeled “Fun fact” are not needed for the class.

2 Day 1

2.1 Introduction

This class touches on many area of mathematics. First, there is graph theory, since our main

object of study will be graphs. Next, since we are studying some algorithm problems on

graphs, we will see some ideas from theoretic computer science.

It is perhaps not surprising to see graph theory and theoretic computer science appearing

together, since there are many algorithm questions for graphs. What is perhaps much more

surprising is that to understand the sparsest cut problem, we will need to study metric

geometry (the geometry of metric spaces).

This is not intended to be a class on graph theory, theoretic computer science, or metric

geometry. Instead, the main goal of this class is to see how these areas are related through

the sparsest cut problem.

Because of time, there will be many details we will have to skip. We will state several

results without proving them. Some of you may have the idea that mathematics is about

proving everything rigorously. While that is one part of math, it is not all of it. See https://

terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

for a nice perspective of the role of rigor in mathematics.

2.2 Graphs

This is a quick introduction to graphs. See Wikipedia https://en.wikipedia.org/wiki/

Graph_(discrete_mathematics) for a more detailed introduction.

A graph is a mathematical object with (1) vertices and (2) edges between the vertices.

We usually call a graph G, and we denote its set of vertices by V and its set of edges by E.

To abbreviate this we often say “Let G = (V,E) be a graph.”

4

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/
https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

For us, all graphs will be finite, simple, undirected. The meaning of these words are:

1. finite: There are finitely many edges.

2. simple: You cannot have multiple edges with the same pair of endpoints.

3. undirected: The edges are not directed.

a

c

b

d e

f

Figure 1: A finite, simple, undirected graph

Example 2.1. The vertex set and edge set for the graph shown in Figure 1 are

V = {a, b, c, d, e, f} (2.1)

E = {ac, ad, bc, be, cd, ce, df, ef} (2.2)

Note that we use uv to denote the edge between u and v. Since the graph is undirected, uv

means the same thing as vu.

2.3 Cuts

https://en.wikipedia.org/wiki/Cut_(graph_theory)

Let G = (V,E) be a graph. A cut of G is a partition of the vertices V into two disjoint

subsets. We can just think of a cut as a subset S ⊂ V . The corresponding partition is

{S, Sc}. Note that S and Sc refer to the same cut.

We define

E(S, Sc) = {e ∈ E : e has one endpoint in S and one endpoint in Sc} (2.3)

We call E(S, Sc) the cut-set of S. The edges in E(S, Sc) are said to cross the cut.

Now we introduce three natural questions we can ask about cuts: min-cut, max-cut, and

sparsest cut.

5

https://en.wikipedia.org/wiki/Cut_(graph_theory)

2.3.1 Minimum cut (or min-cut)

Given:

� a graph G = (V,E)

� two distinct vertices s, t ∈ V . (s is often called the “source,” and t is often called the

“sink” or the “target”)

Find: a cut S such that

� s ∈ S and t ∈ Sc

� |E(S, Sc)| is minimized.

(If we didn’t have the first condition, we could simply take S = ∅.)

2.3.2 Maximum cut (or max-cut)

Given:

� a graph G = (V,E)

Find: a cut S such that

� |E(S, Sc)| is maximized.

2.3.3 Sparsest cut

Given:

� a graph G = (V,E)

Find: a cut S such that

�

|E(S, Sc)|
min(|S|, |Sc|)

is minimized.

The point of the denominator is to try to balance the sizes of S and Sc. You are penalized

if |S| or |Sc| is too small. You can think of sparsest cut as a discrete analogue of the

isoperimetric problem.

Remark 2.2. You may wonder why we are looking at all of these when the class is called

“Sparsest cut.” The reason is that if we jump straight into sparsest cut, we will need to

introduce many new ideas at the same time:

6

� linear programming relaxations

� rounding

� approximation algorithms

� metric spaces

It is better to introduce these new ideas more gradually, so we do that by studying min-cut

and max-cut first. By studying the min-cut problem, we will learn about linear programming

relaxations and rounding. By studying the max-cut problem, we will learn about approxi-

mation algorithms. When we finally get to sparsest cut, we only need one more new thing

(metric spaces) so it should be much more manageable.

2.4 Algorithms and running-time efficiency

This section is a very quick introduction to some relevant concepts in theoretic computer

science.

Since our graphs our finite, we could solve the three problems above by considering all

possible cuts. For each problem, the number of cuts we need to consider is at most the

number of subsets of V , which is 2|V |. However, if V is large, then this is not very feasible.

The time needed for this brute force approach grows exponentially in |V |. For that reason,

we consider this algorithm to be inefficient.

Definition 2.3. An algorithm is said to be of polynomial time if its running time is upper

bounded by a polynomial expression in the size of the input for the algorithm. This means

that there exists constants a, b ≥ 0 such that the following is true: For any input of size N ,

the number of basic operations taken by the algorithm is at most aN b.

For this class, we will use the following informal terminology:

� An algorithm is “efficient” if it is of polynomial time. Otherwise, the algorithm is

“inefficient.”

� A problem is “easy” if it has an efficient algorithm. Otherwise, the problem is “hard.”

Remark 2.4. Note that for us, the distinction between efficient and inefficient is polynomial

vs non-polynomial. We don’t make a distinction between different degrees of polynomials.

The functions N , N2 and 101000N500 are all polynomials, so any of these bounds would be

good enough to show an algorithm is polynomial-time.

If you have studied algorithms before, you have probably learned about sorting algorithms

such as bubble-sort and merge-sort. Given a list of N numbers, bubble-sort has running time

7

O(N2), while merge-sort has running time O(N logN). Since both of these algorithms are

of polynomial time, for the purposes of this class, we consider both of them to be efficient,

even though N logN grows much more slowly than N2.

Theorem 2.5. The min-cut problem can be solved by a polynomial time algorithm.

Proof. We will prove this in the next few sections. Stay tuned!

Theorem 2.6. The max-cut and sparsest cut problems cannot be solved by polynomial time

algorithms, unless P = NP.

Proof. Proof omitted.

Fun fact 2.7. Using computer science terminology, Theorem 2.5 says that the min-cut

problem is in P, while Theorem 2.6 says that the max-cut and sparsest cut problems are

NP-hard. In fact, max-cut and sparsest cut are NP-complete.

Technically, P and NP-hard are classes of decision problems (questions that ask for a

“yes/no” answer), while the three cut problems are optimization problems. Each of these

three problems has a corresponding decision version. For example, the decision version of

min-cut asks the following. Given a graph G = (V,E) and s, t ∈ V and a number λ, is there

a cut S ⊂ V such that s ∈ S, t ∈ Sc, and |E(S, Sc)| ≤ λ? When we say “min-cut is in P”

we really mean that the decision version of min-cut is in P.

Theorem 2.6 might seem like bad news for max-cut and sparsest cut, but this is not the

end of the story. Later, we will talk about efficient approximation algorithms for these two

problems.

2.5 Linear programming

https://en.wikipedia.org/wiki/Linear_programming

For this class, we only need one example of a problem that has a polynomial time algo-

rithm, and that problem is the linear programming problem.

Suppose x1, . . . , xn are variables. A linear equation in x1, . . . , xn is something of the form

a1x1 + · · ·+ anxn = b. (2.4)

A linear inequality in x1, . . . , xn is something of the form

a1x1 + · · ·+ anxn ≤ b. (2.5)

We do not allow strict inequalities.

A linear programming problem (a.k.a. linear program or LP for short) is to maximize

or minimize an expression of the form c1x1 + · · · + cnxn subject to constraints of the forms

8

https://en.wikipedia.org/wiki/Linear_programming

(2.4) and (2.5). The expression that we are maximizing or minimizing is called the objective

function.

Using vector notation can help with writing down the general form of a linear program.

Recall that for two vectors ~c = (c1, . . . , cn) and ~x = (x1, . . . , xn), their dot product is

~c · ~x = c1x1 + · · ·+ cnxn. The general form of a linear program is.

given: ~c = (c1, . . . , cn) ∈ Rn

~ai = (ai,1, . . . , ai,n) ∈ Rn for i = 1, . . . , `

bi ∈ R for i = 1, . . . , `

unknown: ~x = (x1, . . . , xn)

maximize: ~c · ~x
subject to: ~ai · ~x ≤ bi for i = 1, . . . , k

~ai · ~x = bi for i = k + 1, . . . , `

(2.6)

We won’t actually need to write things down this way in this class, but it is useful for some

of the exercises.

Remark 2.8. Often, the term “linear programming problem” is defined with the additional

requirement that all the variables are nonnegative. This can be a convenient condition to

have (e.g., for some algorithms to work), but it’s not necessary for the following reason:

Every linear program of the form (2.6) can be convered into one with nonnegative variables.

See Exercise 3.1 and Exercise 3.2 for more information.

Example 2.9. The following is a linear programming problem:

unknowns: x1, x2

maximize: 2x1 + x2

subject to: x1 ≥ −2

x2 ≤ 1

x1 − x2 ≤ 0

(2.7)

The feasible region (i.e., the region defined by the constraints) is a triangle with vertices

(−2,−2), (−2, 1), (1, 1).

We are trying to maximize 2x1 + x2. For different values of t, the lines 2x1 + x2 = t are

all parallel to each other. (They all have slope −2.) As we increase t, the lines move to the

right. Maximizing 2x1 + x2 is the same as finding how far we can move the line to the right

and have it still intersect the triangle. The rightmost line that does this contains the point

(1, 1) and corresponds to t = 3. So the solution to the linear program is 3, and it is attained

at (x1, x2) = (1, 1).

9

The example Example 2.9 shows us several properties of all linear programs, which we

state in the following lemmas. First recall the definition of convex.

Definition 2.10. A set S ⊂ Rn is convex if for all a, b ∈ S, the line segment joining a and

b is also contained in S.

Lemma 2.11. The feasible region in any linear programming problem will be a closed convex

polytope in Rn.

Proof. The set of x ∈ Rn satisfying (2.4) is a (n − 1)-dimensional plane in Rn, which is a

closed convex set. The set of x ∈ Rn satisfying (2.5) is a half-space in Rn, which is also a

closed convex set. The feasible region is the intersection of such sets. The intersection of

convex sets is convex, and the intersection of closed sets is closed.

Lemma 2.12. For any linear program, the maximum of the objective function, if it exists,

must be attained at one of the vertices of the polytope. (The same is true for the minimum.)

Proof. We omit the proof. The idea is the same as in Example 2.9.

Fun fact 2.13. The word “programming” in “linear programming” does not mean “writing

a computer program.” Nowadays, it means “optimization.” Other examples of this usage

are “dynamic programming,” “integer programming,” “semidefinite programming.”

The origin of this usage was from Dantzig in 1940s. He used “programming” to mean

“planning” (e.g., like in “program of events”). The first uses of linear programming were to

optimize planning problems in the US Air Force.

2.5.1 Algorithms

Solving a system of linear equations is easy. You can use row-reduction to get a polynomial-

time algorithm. Solving a linear program is not as easy, but it can still be done in polynomial-

time, as stated in the following theorem.

Theorem 2.14. Linear programming can be solved with a polynomial time algorithm.

Proof. Proof omitted. See Fun fact 2.15 for some information.

We will rely on Theorem 2.14 a lot in this class. It is fine if you do not know any algorithm

to solve linear programming; we will not need that in this class.

Fun fact 2.15. The first example of a polynomial-time algorithm for linear programming is

Khachiyan’s ellipsoid algorithm, introduced in 1974. It is not a practical algorithm. Another

polynomial time algorithm, Karmarkar’s projective algorithm was introduced in 1984. This

one was actually practical.

See https://en.wikipedia.org/wiki/Linear_programming#Algorithms for more in-

formation.

10

https://en.wikipedia.org/wiki/Linear_programming#Algorithms

There is also something called the simplex method which in practice is very fast, but the

worst-case performance is not polynomial-time.

Fun fact 2.16. There are many numerical libraries for solving linear programs. See for exam-

ple https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.

html

2.6 A reformulation of min-cut

Our goal now is to show how to use linear programming to solve the min-cut problem. This

will be accomplished in the next few sections.

Let G = (V,E) be a graph. For S ⊂ V , let 1S : V → {0, 1} be the indicator function

(a.k.a. characteristic function) of S. That is,

1S(u) =

1, if u ∈ S

0, if u 6∈ S
(2.8)

Observe that if u, v ∈ V , then

|1S(u)− 1S(v)| =

1, if one of u, v is in S and the other is in Sc

0, if u and v are both in S or both in Sc
(2.9)

Therefore,

|E(S, Sc)| =
∑
uv∈E

|1S(u)− 1S(v)| (2.10)

Thus, min-cut is the same as the following optimization problem:

unknown: S ⊂ V

minimize:
∑
uv∈E

|1S(u)− 1S(v)|

subject to: s ∈ S, t ∈ Sc

(MC)

By changing notation, we get the following equivalent problem:

unknowns: {xu}u∈V
minimize:

∑
uv∈E

|xu − xv|

subject to: xu ∈ {0, 1} for all u ∈ V
xs = 1, xt = 0

(MC′)

11

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

To see that (MC) and (MC′) are really the same problem, note that choosing xu ∈ {0, 1} for

each u ∈ V is like choosing a subset S ⊂ V . The correspondence is given by S = {u ∈ V :

xu = 1}.
However, (MC′) is not a linear programming problem. There are two issues

1. The constraint xu ∈ {0, 1} is not a linear constraint.

2. The objective function
∑

uv∈E |xu − xv| is not linear.

We’ll take care of these issues next.

2.7 The LP relaxation of min-cut – part1

https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem#Linear_program_formulation

Consider the following problem:

unknown: f : V → [0, 1]

minimize:
∑
uv∈E

|f(u)− f(v)|

subject to: f(s) = 1, f(t) = 0

(MC-LP)

or changing notation,

unknowns: {xu}u∈V
minimize:

∑
uv∈E

|xu − xv|

subject to: xu ∈ [0, 1] for all u ∈ V
xs = 1, xt = 0

(MC-LP′)

The difference between (MC-LP′) and (MC′) is that we replaced {0, 1} with its convex

hull xu ∈ [0, 1]. Note that xu ∈ [0, 1] is the same as saying 0 ≤ xu ≤ 1, so the constraints

in (MC-LP′) are all linear. Making this kind of change is called a convex relaxation. The set

{0, 1} is not convex, so we replaced it with its convex hull [0, 1].

However, in (MC-LP′), the objective function
∑

uv∈E |xu − xv| is not linear. There’s a

clever trick to fix this, which we will discuss tomorrow. (See also Exercise 3.4 and Exer-

cise 3.5.)

3 Day 1 exercises

Several of these exercises are about equivalent linear programs.

12

https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem#Linear_program_formulation

Definition 3.1. Two linear programs A and B are equivalent if:

1. The two linear programs A and B have the same optimal value.

2. If you know a way to set the unknowns in A to give the optimal value for A, then you

can this information to set the variables in B to give the optimal value for B, and vice

versa.

Exercise 3.1. () Consider the following linear program.

unknowns: p1, n1, p2, n2

maximize: 2(p1 − n1) + (p2 − n2)

subject to: p1 − n1 ≥ −2

p2 − n2 ≤ 1

(p1 − n1)− (p2 − n2) ≤ 0

p1, n1, p2, n2 ≥ 0

(3.1)

Show that (2.7) (from Example 2.9) and (3.1) have the same maximum value. Can you give

an argument that does not actually solve (3.1)?

See Exercise 3.2 for a generalization of this.

Exercise 3.2. () Show that every linear program (as described in (2.6)) is equivalent

(see Definition 3.1) to a linear program with nonnegative variables, i.e., one of the following

form:

given: ~c = (c1, . . . , cn) ∈ Rn

~ai = (ai,1, . . . , ai,n) ∈ Rn for i = 1, . . . , `

bi ∈ R for i = 1, . . . , `

unknown: ~x = (x1, . . . , xn)

maximize: ~c · ~x
subject to: ~ai · ~x ≤ bi for i = 1, . . . , k

~ai · ~x = bi for i = k + 1, . . . , `

~x ≥ ~0

(3.2)

(Here ~x ≥ ~0 means all the components of ~x are nonnegative.)

Exercise 3.3. () Show that every linear program (as described in (2.6)) is equivalent

to one in standard form. In standard form, all the variables are nonnegative, and there are

13

no linear equality constraints:

given: ~c = (c1, . . . , cn) ∈ Rn

~ai = (ai,1, . . . , ai,n) ∈ Rn for i = 1, . . . , k

bi ∈ R for i = 1, . . . , k

unknown: ~x = (x1, . . . , xn)

maximize: ~c · ~x
subject to: ~ai · ~x ≤ bi for i = 1, . . . , k

~x ≥ ~0

(3.3)

Exercise 3.4. () Consider the following minimization problem, which is not a

linear program:

unknowns: x1, x2

minimize: |2x1 + x2|
subject to: x1 ≥ −2

x2 ≤ 1

x1 − x2 ≤ 0

(3.4)

Can you find a linear program which is equivalent to it?

Exercise 3.5. () Same question as (3.4), but change the objective function to

2|x1|+ |x2|.

Exercise 3.6. () This question is about the max-flow problem. Let G = (V,E) be a

(finite, simple, undirected) graph.

For each e ∈ E, let ce > 0 be a number, called the capacity of e. Also, let s, t ∈ V be

two distinct vertices.

In the max-flow problem, we want to “flow” as much quantity from s to t along the edges,

with the following constraints:

1. The amount flowing through an edge e cannot exceed its capacity ce.

2. Stuff cannot accumulate in any of the vertices other than s and t: If u ∈ V \ {s, t},
then the total amount flowing into u has to equal the two amount flowing out of u.

(Thus, by conservation of “mass,” the amount flowing out of s has to equal the amount

flowing into t.)

See Figure 2 for an example. Can you formulate this as a linear programming problem?

14

Figure 2: Example of a max-flow problem

4 Day 2

4.1 The LP relaxation of min-cut – part 2

Recall from yesterday that we are interested in (MC-LP′), but the objective function for that

problem is not linear. There is a trick to fix this, which is illustrated in Example 4.1.

Example 4.1. Consider

unknowns: x1, x2

minimize: |x1|+ |x2|
subject to: [linear constraints on x1, x2]

(4.1)

This is equivalent to

unknowns: x1, x2, y1, y2

minimize: y1 + y2

subject to: y1 ≥ |x1|
y2 ≥ |x2|
[linear constraints on x1, x2]

(4.2)

which in turn is equivalent to

unknowns: x1, x2, y1, y2

minimize: y1 + y2

subject to: y1 ≥ x1

y1 ≥ −x1
y2 ≥ x2

y2 ≥ −x2
[linear constraints on x1, x2]

(4.3)

15

Thus, we have successfully converted (4.1) into a linear program.

Remark 4.2. If we change “minimize” to “maximize” in (4.1), the approach in Example 4.1

will not produce a linear program. You are asked about this in Exercise 5.1.

Following Example 4.1, the minimization problem (MC-LP′) is equivalent to the following:

unknowns: {xu}u∈V ∪ {xuv}uv∈E
minimize:

∑
uv∈E

xuv

subject to: xu ∈ [0, 1] for all u ∈ V
xs = 1, xt = 0

xuv ≥ xu − xv for all u, v ∈ V
xuv ≥ xv − xu for all u, v ∈ V

(MC-LP′′)

(MC-LP′′) is actually a linear program! We refer to (MC-LP′′) (or (MC-LP)) as the linear

programming relaxation of min-cut.

Fun fact 4.3. The same trick used to go from (MC-LP′) to (MC-LP′′) can also be applied

to show that (MC′) is equivalent to the following

unknowns: {xu}u∈V ∪ {xuv}uv∈E
minimize:

∑
uv∈E

xuv

subject to: xu ∈ [0, 1] for all u ∈ V
xs = 1, xt = 0

xuv ≥ xu − xv for all u, v ∈ V
xuv ≥ xv − xu for all u, v ∈ V
{xu}u∈V ∪ {xuv}uv∈E ⊂ Z

(MC′′)

Thus, (MC′) would be a linear programming problem if it were not for the constraint that

the unknowns are integers. This is an example of a integer linear programming problem.

Integer linear programming is NP-hard (and in fact NP-complete).

4.2 From the LP relaxation back to min-cut, the easy way

We can use an efficient algorithm to find a function f ∗ : V → [0, 1] that minimizes (MC-LP).

(Recall Theorem 2.14.) But (MC-LP) is no longer the min-cut problem. What do we do with

this function f ∗?

16

Recall from Lemma 2.12 that the minimum of (MC-LP′′) is attained at a vertex feasible

region. Furthermore, there are efficient algorithms for LP that always output a vertex.

Observe that for any vertex of the feasible region of (MC-LP′′), we have xu ∈ {0, 1}. So

from f , we do in fact get a cut by setting S = {u ∈ V : f ∗(u) = 1}. Furthermore, this cut

minimizes (MC), so we are done!

Fun fact 4.4. For any linear program A, we can define a dual linear program B. There is

something called the strong duality theorem which relates the solutions to A and B. The

dual of min-cut is max-flow. (See Exercise 3.6 for the max-flow problem.) The max-flow

min-cut theorem is a special case of the strong duality theorem. See Exercise 5.7 for more

details.

4.3 Min-cut and its LP relaxation have the same minimum value

Let us forget about Section 4.2. Suppose we have found a function f ∗ : V → [0, 1] that

minimizes (MC-LP). We will now use a more complicated approach to find a cut S that

minimizes (MC). Why? This approach will help us a lot when we study sparsest cut. The

method in Section 4.2 will not work for sparsest cut.

Recall the two optimization problems defined in (MC) and (MC-LP). Let their optimal

values be denoted OPT(MC) and OPT(MC-LP) respectively. In this section we prove the

following without using Section 4.2.

Theorem 4.5. OPT(MC-LP) = OPT(MC)

A preliminary observation: For every S ⊂ V , the indicator function 1S is a function

V → [0, 1], so OPT(MC-LP) ≤ OPT(MC). Thus we only need to show

OPT(MC-LP) ≥ OPT(MC). (4.4)

The key observation is the following.

Lemma 4.6. Let V be a finite set and let f : V → [0, 1] be any function. There are constants

{cS}S⊂V ⊂ [0, 1] such that
∑

S⊂V cS = 1 and

|f(u)− f(v)| =
∑
S⊂V

cS|1S(u)− 1S(v)| for all u, v ∈ V. (4.5)

Remark 4.7. What is a good interpretation of Lemma 4.6? We’ll come back to that when

we discuss metric spaces. See Section 8.2.

For now, let’s observe that this lemma does in fact seem relevant to proving Theorem 4.5.

The expression |f(u)− f(v)| shows up in the objective function of (MC-LP), and the expres-

sion |1S(u)−1S(v)| shows up in the objective function of (MC). If we think of the expressions

17

|f(u)− f(v)| and |1S(u)− 1S(v)| as functions of (u, v) ∈ V × V , then Lemma 4.6 says the

function |f(u) − f(v)| is a weighted average (a.k.a. convex combination) of the functions

{|1S(u)− 1S(v)|}S⊂V .

For fun, we give two proofs. They are really the same proof, just presented differently.

The second proof uses integration to simplify some of the arguments.

First proof of Lemma 4.6. Fix a function f : V → [0, 1]. For x ∈ [0, 1], define

T (x) = f−1([0, x)) = {w ∈ V : f(w) < x}. (4.6)

A subset of V the form T (x) is called a threshold cut with threshold x. (T stands for

threshold.)

For any u, v ∈ V and x ∈ [0, 1], we have

|1T (x)(u)− 1T (x)(v)| =

1, if min{f(u), f(v)} < x ≤ max{f(u), f(v)}

0, otherwise
(4.7)

(This follows from (2.9) and the definition of T (x).)

Let 0 = y1 < y2 < . . . < y` = 1 denote the elements of {f(w) : w ∈ V } ∪ {0, 1} in

increasing order. Observe that if x ∈ (yi−1, yi], then T (x) = T (yi).

For the rest of the proof, keep u and v fixed. Let m,n ∈ {1, . . . , `} be such that ym =

min{f(u), f(v)} and yn = max{f(u), f(v)}. From (4.7),

|1T (yi)(u)− 1T (yi)(v)| =

1, if m < i ≤ n

0, otherwise
(4.8)

Thus, if we let

cS =

yi − yi−1, if S = T (yi) for some i ∈ {2, . . . , `}

0, otherwise
(4.9)

then we have ∑
S⊂V

cS =
∑̀
i=2

cT (yi) =
∑̀
i=2

(yi+1 − yi) = y` − y1 = 1 (4.10)

and ∑
S⊂V

cS|1S(u)− 1S(v)| =
∑̀
i=2

(yi+1 − yi)|1T (yi)(u)− 1T (yi)(v)| (4.11)

=
n∑

i=m+1

(yi+1 − yi) (4.12)

= yn − ym (4.13)

= |f(u)− f(v)| (4.14)

18

which completes the proof.

Second proof of Lemma 4.6. The proof starts in the same way as the first proof by defining

T (x) and noting (4.7). From (4.7), we get∫ 1

0

|1T (x)(u)− 1T (x)(v)| dx =

∫ max{f(u),f(v)}

min{f(u),f(v)}
1 dx = |f(u)− f(v)| (4.15)

For each S ⊂ V , consider

T−1(S) = {x ∈ [0, 1] : T (x) = S} (4.16)

Since V is finite, T−1(S) is a (possibly empty) interval. Note that if S is not a threshold

cut, then T−1(S) = ∅.
Let cS be the length of the interval T−1(S). Since the sets {T−1(S)}S⊂V are disjoint and

[0, 1] =
⋃
S⊂V T

−1(S), we have
∑

S⊂V cS = 1 and∫ 1

0

|1T (x)(u)− 1T (x)(v)| dx =
∑
S⊂V

∫
T−1(S)

|1T (x)(u)− 1T (x)(v)| dx (4.17)

=
∑
S⊂V

∫
T−1(S)

|1S(u)− 1S(v)| dx (4.18)

=
∑
S⊂V

cS|1S(u)− 1S(v)|. (4.19)

Combining this with (4.15) completes the proof.

Remark 4.8. Exercise 5.2 is a generalization of Lemma 4.6 that we will use when studying

sparsest cut. It is also a good way to check your understanding of the proof of Lemma 4.6.

Proof of Theorem 4.5. Let f ∗ : V → [0, 1] achieve the minimum in (MC-LP). Apply Lemma 4.6

to get constants {cS}S⊂V such that (4.5) is satisfied for f ∗. Since f ∗(s) = 1 and f ∗(t) = 0,

by inspecting the proof of Lemma 4.6, we see that if cS > 0, then S is a valid cut for (MC).

Then

OPT(MC) ≥ OPT(MC-LP) (4.20)

=
∑
uv∈E

|f ∗(u)− f ∗(v)| (4.21)

=
∑
uv∈E

∑
S⊂V

cS|1S(u)− 1S(v)| (4.22)

=
∑
S⊂V

cS
∑
uv∈E

|1S(u)− 1S(v)| (4.23)

≥
∑
S⊂V

cSOPT(MC) (4.24)

= OPT(MC) (4.25)

which completes the proof.

19

We’ve shown that OPT(MC-LP) = OPT(MC). We are not done yet. From the minimizer

f ∗ of (MC-LP), how do we get a subset S ⊂ V that solves the min-cut problem? Again, we

want a way that avoids Section 4.2, i.e., we should not assume that f ∗ takes values in {0, 1}.
We will discuss this tomorrow. See also Exercise 5.5.

5 Day 2 exercises

The following exercises are especially recommended because they will be useful for upcoming

classes: Exercise 5.2, Exercise 5.5

Exercise 5.1. () What goes wrong when you try to copy the method in Example 4.1 to

turn the following into a linear program?

unknowns: x1, x2

MAXIMIZE: |x1|+ |x2|
subject to: [linear constraints on x1, x2]

(5.1)

Exercise 5.2. () Let V be a finite set and let f : V → R be any function. Show that

there are constants {cS}S⊂V ⊂ [0,∞) such that

|f(u)− f(v)| =
∑
S⊂V

cS|1S(u)− 1S(v)| for all u, v ∈ V. (5.2)

Note: This “ ” of this exercise is only accurate if you understand the proof of Lemma 4.6.

Exercise 5.3. () Here is an extension of Exercise 5.2. Let `1 be the set of infinite

sequences of real numbers (x1, x2, . . .) such that
∑∞

i=1 |xi| converges.

Let V be a finite set and let f : V → `1 be any function. (So in particular, f(u) =

(f1(u), f2(u), . . .) for some functions fi : V → R.)

Show that there are constants {cS}S⊂V ⊂ [0,∞) such that

∞∑
i=1

|fi(u)− fi(v)| =
∑
S⊂V

cS|1S(u)− 1S(v)| for all u, v ∈ V. (5.3)

Exercise 5.4. () Here is another extension of Exercise 5.2. Let C([a, b]) be the set

of continuous functions [a, b]→ R.

Let V be a finite set and let f : V → C([a, b]) be any function. (Be careful! For each

u ∈ V , f(u) is a function [a, b]→ R. This means that for each u ∈ V and t ∈ [a, b], we have

f(u)(t) ∈ R. Note that f itself is not a function [a, b]→ R.)

Show that there are constants {cS}S⊂V ⊂ [0,∞) such that∫ b

a

|f(u)(t)− f(v)(t)| dt =
∑
S⊂V

cS|1S(u)− 1S(v)| for all u, v ∈ V. (5.4)

20

Fun fact 5.1. If we use measure theory, we can state and prove a general result that contains

Exercise 5.2, Exercise 5.3, and Exercise 5.4 as special cases.

Exercise 5.5. () Suppose f ∗ is a minimizer of (MC-LP). Using this, find (with proof) a

subset S ⊂ V that solves the min-cut problem. Do not use any of the facts from Section 4.2.

In particular, do not assume that for all u ∈ V , f ∗(u) ∈ {0, 1}.
Hint: Examine the proof of Theorem 4.5.

Exercise 5.6. () Here is a version of the min-cut problem for graphs with weights. Let

G = (V,E) be a graph. (As before, it is finite, simple, and undirected.)

For each e ∈ E, let ce > 0 be a number, called the capacity of e. Also, let s, t ∈ V be

two distinct vertices.

For S ⊂ V , we define the capacity of the cut S to be

c(S, Sc) =
∑

e∈E(S,Sc)

ce (5.5)

The min-cut problem for weighted graphs says: Find a cut S ⊂ V such that s ∈ S, t ∈ Sc,
and such that c(S, Sc) is minimized. Can you come up with an LP relaxation for this

problem?

Exercise 5.7. () Look up the definition of a dual linear program, e.g., https:

//en.wikipedia.org/wiki/Dual_linear_program. Show that your linear programs from

Exercise 3.6 and Exercise 5.6 are in fact dual to each other.

Now look up the statement of the strong duality theorem, e.g., https://en.wikipedia.

org/wiki/Dual_linear_program#Strong_duality. Use this to prove the max-flow min-cut

theorem: Given a graph G = (V,E), a source s ∈ V , a sink t ∈ V , and capacities ce > 0, the

minimum cut (as defined in Exercise 5.6) and the maximum flow (as defined in Exercise 3.6)

are equal to each other.

6 Day 3

6.1 Rounding the LP-relaxation of min-cut

We’ve shown that OPT(MC-LP) = OPT(MC). We are not done yet. From the minimizer f ∗

of (MC-LP), how do we get a subset S ⊂ V that solves the min-cut problem? Again, we

want a way that avoids Section 4.2, i.e., we should not assume that f ∗ takes values in {0, 1}.
To find such a cut, let us examine our proof of Theorem 4.5 in more detail. Observe that

from the chain of inequalities (4.20) starts and ends with OPT(MC), which means everything

21

https://en.wikipedia.org/wiki/Dual_linear_program
https://en.wikipedia.org/wiki/Dual_linear_program
https://en.wikipedia.org/wiki/Dual_linear_program#Strong_duality
https://en.wikipedia.org/wiki/Dual_linear_program#Strong_duality

in the chain is equal. In particular,∑
S⊂V

cS
∑
uv∈E

|1S(u)− 1S(v)| =
∑
S⊂V

cSOPT(MC), (6.1)

so

cS
∑
uv∈E

|1S(u)− 1S(v)| = cSOPT(MC) for all S ⊂ V, (6.2)

so

cS > 0 =⇒ OPT(MC) =
∑
uv∈E

|1S(u)− 1S(v)| (6.3)

In other words, take any S with cS > 0. That cut will achieve the minimum. From the

proof of Lemma 4.6, we see that cS > 0 iff S is a threshold cut, i.e., a subset of the form

{u ∈ V : f ∗(u) < x} for some x ∈ (0, 1).

6.2 Summary of our min-cut algorithm

Problem: We want to find a cut S ⊂ V such that OPT(MC) is attained.

1. Consider the the LP-relaxation of OPT(MC), which we called OPT(MC-LP).

2. Find a function f ∗ : V → R that achieves the minimum for OPT(MC-LP). (This can

be done in polynomial-time by using an efficent linear programming algorithm. See

Theorem 2.14.)

3. Let S = {u ∈ V : f ∗(u) < 1
2
}. This achieves the minimum cut. (This step is called

rounding the LP-relaxation. We proved in Section 6.1 why this choice of S works.

Also, note that the 1
2

can be replaced by any number strictly between 0 and 1.)

Remark 6.1. As we already pointed out in Section 4.2, for min-cut, the approach in Sec-

tion 4.3 and Section 6.1 is unnecessarily complicated.

6.3 Max-cut

Recall the max-cut problem:

unknown: S ⊂ V

maximize:
∑
uv∈E

|1S(u)− 1S(v)| (MAXCUT)

There are two changes from min-cut (MC). (1) The word “minimize” has been changed to

“maximize.” (2) There is no longer a source s or a target t.

22

Remark 6.2. We cannot apply the methods of Section 2.7 and Section 4.1 to turn (MAXCUT)

into a linear program. See Remark 4.2. If you do find a way to convert (MAXCUT) into a

linear program, then by Theorem 2.6, you also prove that P = NP!

6.3.1 A randomized 1
2
-approximation algorithm for max-cut

First we prove the following:

Lemma 6.3. For any graph G = (V,E),

1

2
|E| ≤ OPT(MAXCUT) ≤ |E| (6.4)

Proof. It is clear (from the defininitions) that OPT(MAXCUT) ≤ |E|, so we only need to

show OPT(MAXCUT) ≥ 1
2
|E|.

Let S ⊂ V chosen at random, uniformly over all 2|V | subsets of V . Another way to think

about it is that for all x ∈ V , Pr(x ∈ S) = 1
2
, and these are independent.

For each edge uv ∈ E, Pr(uv ∈ E(S, Sc)) = 1
2
. Thus, by linearity of expectation,

expected value of |E(S, Sc)| =
∑
uv∈E

Pr(uv ∈ E(S, Sc) =
1

2
|E|. (6.5)

Thus, for any graph G = (V,E) there is a cut S that cuts at least half of the edges. (This

technique of proof is known as the probabilistic method.)

The proof of Lemma 6.3 shows that if we select a random subset S ⊂ V , then “on

average” we will not be off from the maximum cut by more than a factor of 2:

1

2
OPT(MAXCUT) ≤ expected value of |E(S, Sc)| ≤ OPT(MAXCUT) (6.6)

The example we gave above is a randomized 1
2
-approximation algorithm for max-cut.

Here is the definition of an approximation algorithm.

Definition 6.4. Suppose we have a maximization problem and the optimal value is OPT.

Let APPROX be the value given by our algorithm. If we know that

ρ · OPT ≤ APPROX ≤ OPT (6.7)

then our algorithm is called a ρ-approximation algorithm

Remark 6.5. Sometimes, the term ρ-approximation algorithm is defined with 1/ρ in place

of ρ in (6.7). If we use this convention, then the algorithm above is a randomized 2-

approximation algorithm instead.

23

Fun fact 6.6. It is possible to derandomize the algorithm above. There are several ways

to do this, and they each produce a deterministic polynomial time 1
2
-approximation algo-

rithm for max-cut. See Exercise 7.1. See https://en.wikipedia.org/wiki/Randomized_

algorithm#Derandomization for more on derandomization.

Fun fact 6.7. The Goemans–Williamson algorithm is a ρ-approximation algorithm for max-

cut, with ρ equal to

2

π
min
0≤θ≤π

θ

1− cos θ
≈ 0.878. (6.8)

The proof (which we omit) uses a semidefinite programming relaxation of max-cut, random-

ized rounding, and some Euclidean geometry. See Exercise 7.2 and Exercise 7.3.

If P 6= NP, then there does not exist a polynomial time ρ-approximation algorithm for

any ρ > 16
17
≈ 0.941. If the unique games conjecture is true, then there does not exist a

polynomial time ρ-approximation algorithm for any ρ greater than (6.8).

There are many more things we can say about max-cut. However, that is not our focus,

so we’ll finally move on to sparsest cut.

6.4 Metrics and metric spaces

We will briefly take a break from the graphs and algorithms to talk about metric spaces.

Let X be any set. A function d : X ×X → R is called a metric on X if it satisfies the

following:

� positivity: d(x, y) ≥ 0 for all x, y ∈ X. Furthermore, d(x, y) = 0 iff x = y.

� symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

� triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We say that (X, d) is a metric space. Sometimes we just write X if the metric is under-

stood. (This is like how a group is a set with a binary operation, but people often write “Let

G be a group.”)

Example 6.8. Take X = R and d(x, y) = |x− y|. Then (X, d) is a metric space. We often

refer to this metric space as R. (The metric is understood.)

Example 6.9. Take X = Rn and d(x, y) = ‖x − y‖2 = (
∑n

i=1 |xi − yi|2)
1/2

. Then (X, d) is

a metric space. The metric d is the usual distance from Euclidean geometry; it is called the

Euclidean metric or `2 metric on Rn. We denote the metric space `n2 .

24

https://en.wikipedia.org/wiki/Randomized_algorithm#Derandomization
https://en.wikipedia.org/wiki/Randomized_algorithm#Derandomization

Example 6.10. Let X be any set. Define d(x, y) to be 1 if x 6= y and 0 if x = y. This is

called the discrete metric on X.

Example 6.11. Let G = (V,E) be a connected graph. For u, v ∈ V , let dG(u, v) be the

length of the shortest path from u to v. This is a graph metric.

6.5 The spaces `n1 and `1

We already saw the `2 metric on Rn. Here is another metric on Rn.

d(x, y) = ‖x− y‖1 =
n∑
i=1

|xi − yi| (6.9)

It is not hard to see that this is a metric. You are asked to do this in Exercise 7.6. This is

called the `1 metric (or `1 metric or taxicab metric or Manhattan metric). The metric space

is denoted `n1 .

We can let n→∞ in the following way. For an infinite sequence x = (x1, x2, . . .), define

‖x‖1 =
∑∞

i=1 |xi|. Let X be the set of infinite sequences x such that ‖x‖1 <∞. We define a

metric on X by d(x, y) = ‖x− y‖1 =
∑∞

i=1 |xi − yi|. This metric space is called `1.

Fun fact 6.12. Here are even more metrics on Rn. Define

‖x‖p =

(
∑n

i=1 |xi|p)
1/p

if p ∈ (0,∞)

maxi∈{1,...,n} |xi| if p =∞
(6.10)

We define

dp(x, y) = ‖x− y‖p. (6.11)

For p ∈ [1,∞], the function dp is a metric on Rn. This metric space is called `np . We can also

define `p for infinite sequences in the analogous way. These spaces `np and `p are examples of

Banach spaces. A Banach space is a complete normed vector space. They are central in the

study of functional analysis. We will not say more about Banach spaces in this class. Also,

we only need p = 1 in this class.

For p = 1 and p =∞, it is not hard to see that dp this is a metric. You are asked to do

this in Exercise 7.6. For p ∈ (1,∞), the situation is a little harder. See Exercise 7.7.

6.6 Pseudometrics

The function d is called a pseudometric if it satisfies symmetry, triangle inequality, and

� nonnegativity: d(x, y) ≥ 0 for all x, y ∈ X. Furthermore, if x = y, then d(x, y) = 0.

25

Remark 6.13. Warning: Some people use semimetric instead of pseudometric. But semi-

metric also has a different meaning in other contexts. We’ll just stick to pseudometric.

Fun fact 6.14. According to Wikipedia, in addition to pseudometrics, there are also things

called extended metrics, quasimetrics, metametrics, semimetrics, premetrics, and pseudo-

quasimetrics! See https://en.wikipedia.org/wiki/Metric_(mathematics)#Generalized_

metrics

The difference between metrics and pseudometrics is that for pseudometrics, it is fine to

have some x 6= y satisfying d(x, y) = 0. For metrics, this is not allowed. Why do we care

about pseudometrics? We will talk about that later. See also Exercise 7.10.

7 Day 3 exercises

The following exercises are especially recommended because they will be useful for upcoming

classes: Exercise 7.9, Exercise 7.10.

Exercise 7.1. () Can you find a deterministic 1
2
-approximation algorithm for max-cut

that runs in polynomial time? (Hint: Consider a greedy algorithm.)

Exercise 7.2. () Let G = (V,E) be a graph. Consider the following two optimization

problems.

1. First problem:

unknowns: {xu}u∈V ⊂ R

maximize:
∑
uv∈E

1− xuxv
2

subject to: xu ∈ {−1, 1}

(MAXCUT′)

2. Second problem: Let n = |V |.

unknowns: {~xu}u∈V ⊂ Rn

maximize:
∑
uv∈E

1− ~xu · ~xv
2

subject to: ‖~xu‖22 = 1

(MAXCUT-SDP)

Note that in (MAXCUT-SDP), we have a vector ~xu for each u ∈ V . Also ~xu ·~xv denotes

the dot product, and ‖~xu‖2 = ~xu · ~xu.

Show that (MAXCUT′) is equivalent to (MAXCUT) and that

OPT(MAXCUT-SDP) ≥ OPT(MAXCUT′) (7.1)

26

https://en.wikipedia.org/wiki/Metric_(mathematics)#Generalized_metrics
https://en.wikipedia.org/wiki/Metric_(mathematics)#Generalized_metrics

Fun fact 7.1. (MAXCUT′) is an example of an integer quadratic program. Integer quadratic

programs are hard. (MAXCUT-SDP) is an example of a semidefinite program (SDP). There

are polynomial-time algorithms to solve SDPs.

Exercise 7.3. () Suppose we already have vectors {~x∗u}u∈V that achieve the maxi-

mum in (MAXCUT-SDP). Using these vectors, give a randomized ρ-approximation algorithm

for (MAXCUT), where ρ is (6.8). (Hint: You need a way to use {~x∗u}u∈V to define a cut S ⊂ V .

There will be some randomness involved in this choice.)

Exercise 7.4. () Let G = (V,E) be a connected graph. When is the graph metric dG the

same as the discrete metric on V ?

Exercise 7.5. () Let X = R. Is d(x, y) = |x − y|2 a metric? Is d(x, y) = |x − y|1/2 a

metric?

Exercise 7.6. ()

1. Show that `n1 is a metric space.

2. Show that `n∞ is a metric space.

(In particular, you should check that the triangle inequality holds.)

Exercise 7.7. ()

1. Show that `n2 is a metric space. (Hint: Use the Cauchy–Schwarz inequality.)

2. For p ∈ (1,∞) show that `np is a metric space. (Hint: Use Hölder’s inequality.)

Exercise 7.8. () For p ∈ (0, 1) and n ≥ 2, show that `np is not a metric space.

Exercise 7.9. (–) Let (Xn, d) be a n-point space with the discrete metric. (In

other words, |Xn| = n, and the metric d is defined as in Example 6.10.)

1. Can you find a map f : X4 → R such that d(x, y) = |f(x)− f(y)| for all x, y ∈ X4?

2. Can you find a map f : X4 → R2 such that d(x, y) = ‖f(x)− f(y)‖2 for all x, y ∈ X4?

3. Can you find a map f : X4 → R3 such that d(x, y) = ‖f(x)− f(y)‖2 for all x, y ∈ X4?

4. For which m,n ∈ N does there exist a map f : Xm → Rn such that d(x, y) = ‖f(x)−
f(y)‖2 for all x, y ∈ Xm?

5. Can you find a map f : X4 → R2 such that d(x, y) = ‖f(x)− f(y)‖1 for all x, y ∈ X4?

6. Can you find a map f : X5 → R2 such that d(x, y) = ‖f(x)− f(y)‖1 for all x, y ∈ X5?

27

7. Let n ∈ N. What is the smallest number D ≥ 1 such that there exists a map f : Xn →
R such that

|f(x)− f(y)| ≤ d(x, y) ≤ D · |f(x)− f(y)| for all x, y ∈ Xn? (7.2)

Exercise 7.10. () In the context of the problems we have studied so far, what are some

advantages that pseudometrics have over metric spaces? (This is an open-ended question. I

can think of several answers.)

Exercise 7.11. () Let (X, d) be a pseudometric space.

1. Define a relation ∼ on X by

x ∼ y ⇐⇒ d(x, y) = 0. (7.3)

Show that this is an equivalence relation.

2. For x ∈ X, let [x] ⊂ X denote the equivalence class containing x. Let X̃ denote the

set of equivalence classes. Define d̃ : X̃ × X̃ → R by

d̃([x], [y]) = d(x, y). (7.4)

Show that d̃ is well-defined and that (X̃, d̃) is a metric space. This space is called the

metric space induced by the pseudometric space (X, d).

For the definitions of equivalence relation and equivalence class, see, e.g.,

� https://en.wikipedia.org/wiki/Equivalence_relation

� https://en.wikipedia.org/wiki/Equivalence_class

8 Day 4

8.1 Examples of pseudometrics

For a metric we need d(x, y) > 0 whenever x 6= y, but in linear programming we cannot have

strict inequalities.

Here are some important examples of pseudometrics.

Example 8.1 (Cut pseudometric). If S ⊂ X, then d(x, y) = |1S(x) − 1S(y)| is a pseudo-

metric. It is called a cut pseudometric on X.

28

https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Equivalence_class

Example 8.2 (Line pseudometric). Let X be any set and let f : X → R be any function.

Let d(x, y) = |f(x) − f(y)|. This is a pseudometric. It is called a line pseudometric on X

because it is defined by mapping X into the real line R.

Example 8.3 (`1 pseudometric). Let X be any set and let f : X → `1 be any function.

Let d(x, y) = ‖f(x) − f(y)‖1. This is a pseudometric. It is called a `1 pseudometric on X

because it is defined by mapping X into the space `1.

8.2 Cut-cone representation of `1 pseudometrics

Cut pseudometrics and line pseudometrics already showed up in the min-cut problem; see the

objective functions of (MC) and (MC-LP). Lemma 4.6 can be interpreted as saying: Suppose

X is a finite set and d is a line pseudometric on X. Suppose further that the diameter of

(X, d) is at most 1. (The diameter of a pseudometric space (X, d) is supx,y∈X d(x, y).) Then

d can be written as a convex combination of cut pseudometrics on X.

Here is a slight generalization of Lemma 4.6. We changed the function from V → [0, 1]

to V → R. As a result, we no longer have
∑

S⊂V cS = 1. However, the rest (including the

proof) remains unchanged.

Lemma 8.4 (Cut-cone representation of line pseudometrics, Exercise 5.2). Let V be a finite

set and let f : V → R be any function. Then there are constants {cS}S⊂V ⊂ [0,∞) such that

|f(u)− f(v)| =
∑
S⊂V

cS|1S(u)− 1S(v)| for all u, v ∈ V (8.1)

Proof. This was Exercise 5.2.

Instead of a convex combination (or weighted average), we now have a conical combina-

tion. See Example 8.5 for the reason for this terminology.

Example 8.5. Let ~u = (1, 0) ∈ R2 and ~v = (0, 1) ∈ R2.

1. A linear combination of ~u and ~v is a vector of the form a~u+ b~v for some a, b ∈ R. The

set of all linear combinations of ~u and ~v is the entire plane R2.

2. A convex combination of ~u and ~v is a vector of the form a~u + b~v for some a, b ∈ [0, 1]

with a + b = 1. The set of all convex combinations of ~u and ~v is the line segment

joining ~u and ~v.

3. A conical combination of ~u and ~v is a vector of the form a~u+ b~v for some a, b ≥ 0. The

set of all conical combinations of ~u and ~v is the closed first quadrant {(x1, x2) : x1 ≥
0, x2 ≥ 0}.

29

Now let’s consider functions to `1. (The following was also Exercise 5.3, but we give a

proof here.)

Lemma 8.6 (Cut-cone representation of `1 pseudometrics). Let V be a finite set and let

f : V → `1 be any function. Then there are constants {cS}S⊂V ⊂ [0,∞) such that

‖f(u)− f(v)‖1 =
∑
S⊂V

cS|1S(u)− 1S(v)| for all u, v ∈ V (8.2)

Proof. Recall that elements of `1 are infinite sequences. Thus we can write

f(u) = (f1(u), f2(u), . . .) (8.3)

for some functions fi : V → R.

For each i, apply Lemma 8.4 to fi to get nonnegative constants {ci,S}S⊂V such that

|fi(u)− fi(v)| =
∑
S⊂V

ci,S|1S(u)− 1S(v)| (8.4)

Then

‖f(u)− f(v)‖1 =
∞∑
i=1

|fi(u)− fi(v)| (8.5)

=
∞∑
i=1

∑
S⊂V

ci,S|1S(u)− 1S(v)| (8.6)

=
∑
S⊂V

(
∞∑
i=1

ci,S

)
|1S(u)− 1S(v)| (8.7)

so define cS =
∑∞

i=1 ci,S.

(Some analysis remarks: We could change the order of summation in the argument above

because all the terms are nonnegative. Also, since ‖f(u)− f(v)‖1 < ∞ for all u, v ∈ V , we

know that cS <∞ for all S ⊂ V .)

Remark 8.7. In, we didn’t care about the whole space `1. We only cared about the image

of f , which is a finite subset of `1. It is a fact that every n-point subset of `1 can be

embedded isometrically in `m1 for some m ∈ N. (See Definition 9.1 for what this means and

see Exercise 9.9 for a more precise statement.) A consequence of this fact is that we do

not actually need to work with infinite sums in the proof of Lemma 8.6. (Of course, the

convergence issues just get shifted over to Exercise 9.9.)

8.3 Sparsest cut

Given a graph G = (V,E) and a cut S ⊂ V , define the sparsity of the cut to be

spar(S) =
|E(S, Sc)|

min(|S|, |Sc|)
(8.8)

30

The sparsest cut problem is to find a cut S that minimizes the sparsity. As stated in

Theorem 2.6 this is NP-hard. Like with max-cut, we will give an approximation algorithm.

Definition 8.8. Suppose we have a minimization problem and the optimal value is OPT.

Let APPROX be the value given by our algorithm. If we know that

OPT ≤ APPROX ≤ ρ · OPT (8.9)

then our algorithm is called a ρ-approximation algorithm

The difference between Definition 6.4 and Definition 8.8 is in the position of the ρ. This

is because for minimization problems, we always have APPROX ≥ OPT, while the inequality

is reversed for maximization problems.

Here is what we will show about sparsest cut. This is the main theorem of the class.

Theorem 8.9. There is a constant C > 0 such that the following is true. Given a graph

G = (V,E), we can use linear programming to find a cut with sparsity at most a factor

C log |V | from the minimum sparsity. That is, if the minimum sparsity is OPT, then our

algorithm will produce a cut with sparsity APPROX which satisfies

OPT ≤ APPROX ≤ (C log |V |)OPT (8.10)

Theorem 8.9 asserts that there is an efficient C log |V |-approximation algorithm for spars-

est cut. Unlike the approximation algorithm we saw for max-cut, the approximation ratio

for the algorithm mentioned below depends on the size of the graph.

Remark 8.10. The constant C in Theorem 8.9 is an absolute constant. We could compute

what the constant is if we wanted, but as is often the case in theoretical computer science

and analysis, we care more about order of magnitude than about specific constants. We can

“hide” the constant by using big-O notation. With this notation, Theorem 8.9 says that

there is a O(log |V |)-approximation algorithm for sparsest cut.

Remark 8.11. The proof we will give for Theorem 8.9 was independently discovered by two

groups of researchers: (1) Linial, London, Rabinovich (published in 1995), and (2) Aumann,

Rabani (published in 1998).

8.4 A reformulation of sparsest cut

The first thing we do is take care of the denominator min(|S|, |Sc|). To get rid of the mini-

mum, we use the following basic inequality (which, as seen in class, is clearly too advanced

for me).

31

Lemma 8.12. If a, b > 0 and a+ b = n, then

ab

n
≤ min(a, b) ≤ 2ab

n
. (8.11)

Proof. Use ab = min(a, b) max(a, b) and n
2
≤ max(a, b) ≤ n.

Since |S|+ |Sc| = |V |, (8.12) implies

1

2
|V | · |E(S, Sc)|

|S||Sc|
≤ |E(S, Sc)|

min(|S|, |Sc|)
≤ |V | · |E(S, Sc)|

|S||Sc|
(8.12)

From (2.9), we get:

|E(S, Sc)| =
∑
uv∈E

|1S(u)− 1S(v)| (8.13)

|S||Sc| = 1

2

∑
u,v∈V

|1S(u)− 1S(v)|. (8.14)

The sum in (8.14) is over all ordered pairs (u, v) ∈ V × V . You are asked to prove (8.14) in

Exercise 9.2.

We define the uniform sparsity to be

uspar(S) =

∑
uv∈E |1S(u)− 1S(v)|∑
u,v∈V |1S(u)− 1S(v)|

=
|E(S, Sc)|
2|S||Sc|

(8.15)

so that (8.12) implies

|V | uspar(S) ≤ spar(S) ≤ 2|V | uspar(S). (8.16)

One consequence of (8.16) is that if you know the precisely minimum value of uspar(S), then

you know the minimum value of spar(S) within a factor of 2.

Remark 8.13. See Exercise 9.3 for a generalization of sparsest cut, and for some explanation

of the term “uniform” above.

Motivated by the above discussion, let’s consider the following minimization problem

unknowns: S ⊂ V

minimize:

∑
uv∈E |1S(u)− 1S(v)|∑
u,v∈V |1S(u)− 1S(v)|

(SC)

We’ll refer to (SC) to it as the sparsest cut problem. From now on, we can ignore the original

version of sparsest cut given in Section 2.3.3. This is because a ρ-approximation algorithm

for (SC) would give a 2ρ-approximation algorithm for the original Section 2.3.3 version of

sparsest cut. Unlike in our analysis of max-cut, here we do not care about constant factors.

We cannot copy what we did with min-cut to get a LP relexation for (SC) because the

objective function here is more complicated. We’ll need to take another route, and this is

where pseudometric spaces come in.

32

8.5 Three minimization problems related to sparsest cut

Consider the following three minimization problems. Note that the objective function is the

same in all three. The only differences are in the types of pseudometrics that we allow.

1. In the first problem, we minimize over cut pseudometrics:

unknowns: d : V × V → R

minimize:

∑
uv∈E d(u, v)∑
u,v∈V d(u, v)

subject to: d is a cut pseudometric

(SC-CUT)

Observe that (SC-CUT) is the same minimization question as the uniform sparsest cut

problem (SC).

2. In the second problem, we minimize over `1 pseudometrics:

unknowns: d : V × V → R

minimize:

∑
uv∈E d(u, v)∑
u,v∈V d(u, v)

subject to: d is a `1 pseudometric

(SC-`1)

3. In the third problem, we place no further constraints on the pseudometric:

unknowns: d : V × V → R

minimize:

∑
uv∈E d(u, v)∑
u,v∈V d(u, v)

subject to: d is a pseudometric

(SC-ΨM)

(The symbol Ψ is the capital Greek letter psi. I use “ΨM” as an abbreviation for

“pseudometric.”) (SC-ΨM) is known as the Leighton–Rao LP relaxation of sparsest

cut. As the name suggests, (SC-ΨM) is actually a linear program. That is because it

is equivalent to the following:

unknowns: (du,v)u,v∈V

minimize:
∑
uv∈E

du,v

subject to:
∑
u,v∈V

du,v = 1

du,u = 0 for all u ∈ V
du,v ≥ 0 for all u, v ∈ V
du,v = dv,u for all u, v ∈ V
du,w ≤ du,v + du,w for all u, v, w ∈ V

(SC-ΨM′)

33

All the constraints are linear! The objective function is linear too!

Since every cut pseudometric is an `1 pseudometric and every `1 pseudometric is a pseu-

dometric (Exercise 9.1), we have:

OPT(SC-ΨM) ≤ OPT(SC-`1) ≤ OPT(SC-CUT). (8.17)

In fact, Lemma 8.6 implies

OPT(SC-`1) = OPT(SC-CUT). (8.18)

The argument is very similar to the proof of Theorem 4.5. You are asked to show this in

Exercise 9.5.

Thanks to (8.18), we only need to study the relationship between OPT(SC-ΨM) and

OPT(SC-`1). We will get to this tomorrow. See also Exercise 9.6.

9 Day 4 exercises

The following exercises are especially recommended because they will be useful for upcoming

classes: Exercise 9.5, Exercise 9.6

Exercise 9.1. () Show that every cut pseudometric is a line pseudometric, and that

every line pseudometric is an `1 pseudometric. (The purpose of this exercise it to make sure

you understand the definitions.)

Exercise 9.2. () For S ⊂ V , prove |S||Sc| = 1
2

∑
u,v∈V |1S(u)− 1S(v)|.

Exercise 9.3. () Let G = (V,E) be a graph. Let C : E → R>0 and D : V ×V → R≥0
be two functions. C(e) is called the capacity of the edge e. D(u, v) is called the demand

associated to the ordered pair (u, v) ∈ V × V . Define

OPT = min
∅(S(V

∑
uv∈E C(uv)|1S(u)− 1S(v)|∑
u,v∈V D(u, v)|1S(u)− 1S(v)|

(9.1)

The minimization problem (9.1) is called sparsest cut with general demands. (Note: Sparsest

cut with uniform demands refers to the problem when D(u, v) = 1 for all u, v ∈ V . If in

addition, when C(e) = 1 for all e ∈ E, then the fraction in the right-hand side of (9.1) is

precisely the uniform sparsity (8.15).)

One motivativation for the problem above is in studying a “multicommodity flow” prob-

lem. Consider the following situation. For u, v ∈ V , we would like to ship the quantity

D(u, v) of some “commodity” from u to v along the graph. Here, the direction matters.

34

However, there are two things making this difficult: (1) For each pair (u, v), the type of

commodity is different. (2) For each e ∈ E, the total amount of commodity (of all types)

being transported across e (in both directions) cannot exceed C(e).

Let λ∗ ≥ 0 be the largest number such that the following is true: There exists a way

to ship commodities along the graph so that for any pair (u, v), at least λ∗ ·D(u, v) of the

commodity is being shipped from u to v. Show that

λ∗ ≤ OPT (9.2)

Exercise 9.4. () Consider the max-flow and weighted min-cut problems from Exercise 3.6

and Exercise 5.6 respectively. How do these show up as a special case of Exercise 9.3? What

does (9.2) say about the max-flow and min-cut problems? (Hint: It says something weaker

than the max-flow min-cut theorem of Exercise 5.7.)

Exercise 9.5. () Show OPT(SC-`1) = OPT(SC-CUT). (Hint: It is helpful if you

understand the proof of Theorem 4.5 well.)

Exercise 9.6. () We already know from (8.17) that OPT(SC-ΨM) ≤ OPT(SC-`1).

What other kind of relation between OPT(SC-ΨM) and OPT(SC-`1) should we be looking

for? What kind of lemma would we need to show if we want to prove this kind of relation?

This is an intentially vague and open-ended question. (This is also the kind of question you

ask yourself frequently when doing mathematical research.)

Definition 9.1. Let (X, d) be a metric space, let p ∈ [1,∞], let n ∈ N. We say X embeds

isometrically into `np if there is a map f : X → `np such that

‖f(u)− f(v)‖p = d(u, v) for all u, v ∈ X. (9.3)

(Note that the concept of isometric embeddings already appeared in Exercise 7.9.)

Exercise 9.7. () Show that every n-point metric space embeds isometrically into `n−1∞ .

Exercise 9.8. () Show that if X is any n-point subset of `2, then X embeds isometrically

into `n−12 . Here, the metric on X is the `2 metric.

Exercise 9.9. () Let n ∈ N. Show that there exists a N ∈ N such that the following

is true. If p ∈ [1,∞] and X is any n-point subset of `p, then X embeds isometrically into

`Np . Here, the metric on X is the `p metric. (Note: the statement is true with N =
(
n
2

)
.)

10 Day 5

10.1 Metric embeddings

We begin with the following definition.

35

Definition 10.1. Let (X, dX) and (Y, dY) be metric spaces. We say f : X → Y is an

isometric embedding if it satisfies

dY (f(u), f(v)) = dX(u, v) for all u, v ∈ X. (10.1)

Example 10.2. A 3-point metric space with the discrete metric embeds isometrically into

`22. A 4-point metric space with the discrete metric embeds isometrically into `21 but not into

`22. This was part of Exercise 7.9.

Definition 10.3. Let (X, d) be a metric space, let p ∈ [1,∞], let n ∈ N, and let D ≥ 1. We

say X embeds into `p with distortion D if there is a map f : X → `np such that

‖f(u)− f(v)‖p ≤ d(u, v) ≤ D · ‖f(u)− f(v)‖p for all u, v ∈ X. (10.2)

We also say that f is an embedding of X into `np with distortion D. (There is an analogous

definition with `p in place of `np .)

Remark 10.4. For metric spaces (X, dX) and (Y, dY), the definition of “X embeds into Y

with distortion D” is not the most straightforward generalization of (10.2), but it is not too

different. See Exercise 11.1.

Example 10.5. Let (X, d) be a metric space. Then the following statements are equivalent.

1. (X, d) embeds into `p with distortion 1.

2. (X, d) embeds isometrically into `p.

3. The metric d is an `p metric on X. (Example 8.3 generalizes to `p metrics.)

Example 10.6. Let X be a 3-point metric space with the discrete metric. Then X embeds

into R with distortion 2, and X cannot be embedded into R with distortion D for any D < 2.

(Note that R is the same as `11, or more generally, `1p for any p ∈ [1,∞].)

Now we connect embeddings of finite metric spaces into `1 to the LP relaxation of sparsest

cut (SC-ΨM).

Lemma 10.7. Let G = (V,E) be a graph. Suppose that every |V |-point metric space embeds

into `1 with distortion D. Then

OPT(SC-CUT) ≤ D · OPT(SC-ΨM) (10.3)

Proof. Let d∗ : V × V → R be a pseudometric that attains the minimum in OPT(SC-ΨM).

Use the hypothesis of the lemma to get a map f : V → `1 with distortion at most D. That

is,

‖f(u)− f(v)‖1 ≤ d∗(u, v) ≤ D · ‖f(u)− f(v)‖1 (10.4)

36

Then

OPT(SC-ΨM) =

∑
uv∈E d

∗(u, v)∑
u,v∈V d

∗(u, v)
(10.5)

≥
∑

uv∈E ‖f(u)− f(v)‖1
D
∑

u,v∈V ‖f(u)− f(v)‖1
(10.6)

≥ 1

D
OPT(SC-`1) (10.7)

=
1

D
OPT(SC-CUT) (10.8)

where we used (8.18) in the last line.

So then the question becomes: How well can we embed pseudometric spaces into `1?

10.2 Rounding the Leighton–Rao LP

Let us delay addressing the question Here is what we have so far. Given a graph G = (V,E),

we can form the Leighton–Rao LP relaxation (SC-ΨM). By running an efficient algorithm

to solve (SC-ΨM), we get a pseudometric d∗ : V × V → R.

Suppose we find a function f : V → `p such that (10.4) is satisfied. (In the next section,

we will talk about what we can take D to be.) Then we apply Lemma 8.6 to f to get

constants {cS}S⊂V ⊂ [0,∞). By examining the proof of Lemma 8.6, we see that if cS > 0,

then there exists an i and an x such that S = {u ∈ V : fi(u) < x}. Such a cut is called a

threshold cut.

Furthermore, we can show the following. This is analogous to the procedure described

in Section 6.1 for min-cut.

Lemma 10.8. Let G = (V,E) be a graph. Suppose that every |V |-point metric space embeds

into `1 with distortion D. Then there exists a threshold cut S such that

uspar(S) ≤ D · OPT(SC-CUT) (10.9)

Proof. You are asked to do this in Exercise 11.2.

10.3 Bourgain’s theorem

Theorem 10.9 (Bourgain’s theorem). There is a constant C > 0 so that the following is

true: Any finite metric space (X, d) embeds into `1 with distortion C log |X|.

We are interested in computations. If we inspect the proof of Bourgain’s theorem, we

actually get the following.

37

Theorem 10.10 (Bourgain’s theorem, more detailed). There is a constant C > 0 so that

the following is true: Let (X, d) be an n-point metric space. Then there is an efficient

randomized algorithm to compute an embedding of (X, d) into `N1 with distortion C log n,

where N = bC(log n)2c.

The proof is clever. It does not require anything too advanced. However, we do not have

time to cover it this week.

Remark 10.11. Bourgain died of cancer in 2018. Terry Tao wrote a nice blog post with some

stories about Bourgain https://terrytao.wordpress.com/2018/12/29/jean-bourgain/.

Be sure to take a look at the photo of Bourgain’s paper.

10.4 Proof of the O(log |V |)-approximation algorithm

Now we are ready to prove the main theorem for this class!

Proof of Theorem 8.9. We give an efficient C log |V |-approximation algorithm for sparsest

cut and explain why it works.

1. Starting with a graph G = (V,E), form the Leighton–Rao LP relaxation (SC-ΨM).

2. Solve (SC-ΨM) with an efficient polynomial time algorithm. This gives a pseudometric

d∗ on V .

� This step is possible because of Theorem 2.14.

3. Efficiently compute an embedding f : (V, d∗) → `N1 with distortion C log |V |, where

N ≤ C(log |V |)2.

� This step is possible because of Bourgain’s theorem (Theorem 10.10).

4. Consider all threshold cuts, i.e., cuts of the form S = {u ∈ V : fi(u) < x} where

i ∈ {1, . . . , N} and x ∈ R. Choose the threshold cut S∗ that minimizes uspar(S). This

is the cut returned by our approximation algorithm.

� We can apply Lemma 10.8 with D = C log |V | to conclude that

uspar(S∗) ≤ C log |V | · OPT(SC-CUT). (10.10)

� To see that this step runs in polynomial time, note the following: For each i =

1, . . . , N , there are at most |V | threshold cuts. Thus, there are at most N |V | ≤
C|V |(log |V |)2 threshold cuts.

Note that we relied on two theorems that we did not prove: (1) Theorem 2.14, the

existence of a polynomial time algorithm for LPs, and (2) Theorem 10.10, Bourgain’s theorem

on embeddings into `1 .

38

https://terrytao.wordpress.com/2018/12/29/jean-bourgain/

10.5 Sharpness of this approximation algorithm

By Lemma 10.7 and Theorem 10.9, there is an absolute constant C > 0 such that for any

graph G = (V,E),

OPT(SC-CUT)

OPT(SC-ΨM)
≤ C log |V |. (10.11)

In this section, we show that the log |V | factor in the Leighton–Rao LP relaxation cannot

be improved.

Theorem 10.12. There exist a constant c > 0 and a sequence of graphs Gn = (Vn, En) such

that |Vn| → ∞ and

OPT(SC-CUT)

OPT(SC-ΨM)
≥ c log |Vn|. (10.12)

A concise way to say the above results is: “The integrality gap of the Leighton–Rao LP

relaxation of sparsest cut is O(log |V |).”
To prove Theorem 10.12, we need to find graphs where OPT(SC-CUT) is “large” and

OPT(SC-ΨM) is “small.” First, we make the following definition.

Definition 10.13. The edge expansion or Cheeger constant of G = (V,E) is the quantity

h(G) = min
∅(S(V

spar(S) = min
0<|S|≤ 1

2
|V |

spar(S) = min
0<|S|≤ 1

2
|V |

|E(S, Sc)|
|S|

. (10.13)

In particular, if S ⊂ V and 0 < |S| ≤ 1
2
|V |, then

|E(S, Sc)| ≥ h(G)|S| (10.14)

Informally, if h(G) is not too close to zero, given any subset S ⊂ V that is not too large,

there are “many” edges coming out of S.

It was convenient to use spar(S) in Definition 10.13, but now we relate h(G) back to

(SC-CUT), which was defined in terms of uspar(S).

Lemma 10.14. For any graph G = (V,E), we have

OPT(SC-CUT) ≥ h(G)

2|V |
. (10.15)

Proof. We have

OPT(SC-CUT) = min
0<|S|≤ 1

2
|V |

|E(S, Sc)|
2|S||Sc|

≥ h(G)

2|V |
(10.16)

where in the inequality, we used the definition of h(G) and the fact that |Sc| ≤ |V |.

39

Definition 10.15. A graph G = (V,E) is d-regular if each vertex is the endpoint of d edges.

Lemma 10.16 (d-regular implies OPT(SC-ΨM) is small). If G = (V,E) is d-regular, then

OPT(SC-ΨM) ≤ d

|V |
· 1

blogd(V/2)c
(10.17)

Proof. Let dG : V × V → R be the graph metric, as defined in Example 6.11. (Warning: In

this proof the letter d is used both for d-regular and for the graph metric dG.) Since

OPT(SC-ΨM) ≤
∑

uv∈E dG(u, v)∑
u,v∈V dG(u, v)

(10.18)

we just need to give an upper bound for the numerator and a lower bound for the denomi-

nator. Let us try to bound both by an expression in |V |.
We can compute the numerator:∑

uv∈E

dG(u, v) =
∑
uv∈E

1 = |E| = d|V |
2

(10.19)

In the last line, we use the fact that G is d-regular and a double-counting argument.

Giving a lower bound on the denominator takes more work. We actually need to use the

fact that G is d-regular. The informal idea is that since G is d-regular, there are “many”

pairs of vertices that are “far” from each other. Now we make this idea precise.

For u ∈ V and r ∈ {0, 1, . . .}, we have

|{v ∈ V : dG(u, v) = r}| ≤ dr. (10.20)

(To show this, use the fact that G is d-regular, and induct on r.) Therefore,

|{v ∈ V : dG(u, v) ≤ r − 1}| ≤ 1 + d+ d2 + · · ·+ dr−1 < dr. (10.21)

Thus, if we let r0 = blogd
|V |
2
c, then

|{v ∈ V : dG(u, v) ≥ r0}| ≥ |V | − dr0 ≥ |V | −
|V |
2

=
|V |
2

(10.22)

This is true for each fixed u ∈ V , so∑
u,v∈V

dG(u, v) ≥
∑
u∈V

r0
|V |
2

= r0
|V |2

2
(10.23)

Thus, using (10.18), (10.19), and (10.23), we have

OPT(SC-ΨM) ≤
d|V |
2

r0
|V |2
2

=
d

r0|V |
=

d

|V |
· 1

blogd(|V |/2)c
(10.24)

which completes the proof.

40

Lemma 10.14 tells us how to make OPT(SC-CUT) large, and Lemma 10.16 tells us a way

to make OPT(SC-ΨM) small. The following theorem tells us it is possible to do both at the

same time.

Theorem 10.17 (Existence of constant-degree expander graphs). There exists a number

d ∈ N, a constant h0 > 0, and a sequence of finite graphs Gn = (Vn, En) such that

1. Gn is d-regular.

2. h(Gn) ≥ h0 for all n

3. limn→∞ |Vn| =∞

Proof. Proof omitted. See Remark 10.18.

Remark 10.18. Theorem 10.17 is true for any d ≥ 3, but we only need it for a single d.

It can be proved using the probabilistic method. There are also explicit constructions, but

those are harder.

Using Lemma 10.14, Lemma 10.16, and Theorem 10.17 we can prove Theorem 10.12. See

Exercise 11.3.

One consequence of Theorem 10.12 is that the log |X| in Bourgain’s theorem Theo-

rem 10.9 cannot be improved either.

Corollary 10.19 (Bourgain’s theorem is sharp). There exist a constant c > 0 and a sequence

of metric spaces (Xn, dn) such that |Xn| → ∞ and (Xn, dn) does not embed into `1 with

distortion c log |Xn|.

Proof. You are asked to do this in Exercise 11.4.

Remark 10.20. Bourgain’s theorem Theorem 10.9 is about metric spaces. To show that it

is sharp, we do not stay in the field of metric geometry. We use graph theory (existence of

constant degree expanders) as well as theoretical computer science (the sparsest cut problem).

10.6 End of class remark

As stated in the introduction, this class is not intended to be a class on graph theory,

theoretic computer science, or metric geometry. Instead, the main goal of this class is to see

how these areas are related through the sparsest cut problem.

From here, there are many areas to explore. For example, we have used a non-trivial

theorem from each of these areas without proof:

1. Theoretical computer science: Solvability of linear programming in polynomial time

(Theorem 2.14)

41

2. Metric geometry: Bourgain’s theorem on embeddings of metric spaces (Theorem 10.9)

3. Graph theory: Existence of constant-degree expander graphs (Theorem 10.17)

10.7 Bonus: Better approximation algorithms for sparsest cut

We will not prove anything in this section. In the class, we focused only on sparsest cut

with uniform demands, but the discussion above also applied to sparsest cut with general

demands when we make the appropriate modifications. (See Exercise 9.3 for the relevant

definitions.)

The following results make a distinction between uniform versus general demands.

Theorem 10.21 (Arora, Rao, Vazirani 2004). There is a constant C > 0 such that the

following is true. There is an efficient C
√

log |V |-approximation algorithm for sparsest cut

with uniform demands.

Theorem 10.22 (Arora, Lee, Naor 2005). There is a constant C > 0 such that the following

is true. There is an efficient C
√

log |V | log log |V |-approximation algorithm for sparsest cut

with general demands.

We give a few ideas of the proofs. Both Theorem 10.21 and Theorem 10.22 consider

the following problem, called the Goemans–Linial semidefinite programming relaxation of

sparsest cut. (It is stated below only for uniform demands, but the problem for general

demands is analogous. Again, see Exercise 9.3.)

unknowns: d : V × V → R

minimize:

∑
uv∈E d(u, v)∑
u,v∈V d(u, v)

subject to: d is a negative type pseudometric

(SC-NEG)

We will not define “semidefinite programming” or “negative type pseudometric,” but here

are some facts.

Lemma 10.23. Every `1 pseudometric is a negative type pseudometric.

Lemma 10.24. (SC-NEG) is a semidefinite program.

Theorem 10.25 (Grötschel, Lovász, Schrijver 1981). Semidefinite programming can be

solved with a polynomial time algorithm.

Theorem 10.26 (Arora, Rao, Vazirani 2004). For sparsest cut with uniform demands, there

is a constant C > 0 such that

OPT(SC-CUT)

OPT(SC-NEG)
≤ C

√
log |V |. (10.25)

42

Theorem 10.27 (Arora, Lee, Naor 2005). For sparsest cut with general demands, there is

a constant C > 0 such that

OPT(SC-general-demands-CUT)

OPT(SC-general-demands-NEG)
≤ C

√
log |V | log log |V |. (10.26)

The proof of Theorem 10.26 uses structural results for negative type metric spaces. The

proof of Theorem 10.27 uses the following embedding theorem. The distortion here is smaller

than the distortion in Bourgain’s theorem (Theorem 10.9) because here we only consider

negative type metric spaces.

Theorem 10.28 (Arora, Lee, Naor 2005). There is a constant C > 0 so that the fol-

lowing is true: Any finite negative type metric space (X, d) embeds into `1 with distortion

C
√

log |X| log log |X|.

We do not know if the
√

log |V | in Theorem 10.26 is sharp. The current best lower bound

is ec
√

log log |V |.

We do not know if the
√

log |V | log log |V | in Theorem 10.27 is sharp either. The current

best lower bound is
√

log |V |, so the upper and lower bounds are not too far from each other.

This lower bound was proved very recently, and is a consequence of the following theorem.

Theorem 10.29 (Naor, Young 2017). There exists a c > 0 such that the following is true.

Let G = (V,E) be the Cayley graph of the discrete 5-dimensional Heisenberg group H5
Z with

the standard generating set. Let Bn ⊂ V be a ball of radius n in G. Then Bn (with the graph

metric) is a negative type metric space, but it cannot be embedded into `1 with distortion

c
√

log |Bn|. As a consequence, for the graphs Bn, we have

OPT(SC-general-demands-CUT)

OPT(SC-general-demands-NEG)
≥ c
√

log |Bn|. (10.27)

Some topics in math relevant to the proof of Theorem 10.29 include: functional analysis,

geometric group theory, harmonic analysis, sub-Riemannian geometry, geometric measure

theory, ergodic theory, group representations, and metric differentiation. I will not make

any attempt to explain the statement of Theorem 10.29 here. Have fun!

11 Day 5 exercises

Exercise 11.1. () Let (X, dX) and (Y, dY) be metric spaces. We say f : X → Y is an

embedding with distortion D if there is are constants 0 < c1 ≤ c2 such that c1c2 ≤ D and

c1 · dY (f(u), f(v)) ≤ dX(u, v) ≤ c2 · dY (f(u), f(v)) for all u, v ∈ X. (11.1)

We say X embeds into Y with distortion D if there exists an f as in (11.1). Show that when

(Y, dY) is `p or `np , then this definition is equivalent to Definition 10.3.

43

Exercise 11.2. () Prove Lemma 10.8.

Exercise 11.3. () Using Lemma 10.14, Lemma 10.16, and Theorem 10.17, prove Theo-

rem 10.12. Apart from the lemmas, you only need to use some basic algebra.

Exercise 11.4. () Using Theorem 10.12, prove Corollary 10.19.

12 Acknowledgments

I attended a computational and metric geometry class taught by Yury Makarychev in Winter

2019, which introduced me to the subject of this Mathcamp class. His course notes have

also been very helpful: https://home.ttic.edu/~yury/courses/geom2019/

I am super thankful to Jaume de Dios Pont and Andrea Olivo for helping me prepare for

this class. In the last week of June, I said to them “I am teaching a class about sparsest cut

in two weeks. Would you like to hear me talk about it now? However, I have not prepared

anything yet, and I have not thought about sparsest cut for over a year.” They said yes and

were extremely helpful the whole time, as I stuggled to recall the material and explain it

to them. (I think this method is a fantastic away to review things you learned in the past.

However, it requires the help of some very patient friends.)

44

https://home.ttic.edu/~yury/courses/geom2019/

	Introduction
	Course blurb
	References
	Guide for these notes

	Day 1
	Introduction
	Graphs
	Cuts
	Minimum cut (or min-cut)
	Maximum cut (or max-cut)
	Sparsest cut

	Algorithms and running-time efficiency
	Linear programming
	Algorithms

	A reformulation of min-cut
	The LP relaxation of min-cut – part1

	Day 1 exercises
	Day 2
	The LP relaxation of min-cut – part 2
	From the LP relaxation back to min-cut, the easy way
	Min-cut and its LP relaxation have the same minimum value

	Day 2 exercises
	Day 3
	Rounding the LP-relaxation of min-cut
	Summary of our min-cut algorithm
	Max-cut
	A randomized 12-approximation algorithm for max-cut

	Metrics and metric spaces
	The spaces 1n and 1
	Pseudometrics

	Day 3 exercises
	Day 4
	Examples of pseudometrics
	Cut-cone representation of 1 pseudometrics
	Sparsest cut
	A reformulation of sparsest cut
	Three minimization problems related to sparsest cut

	Day 4 exercises
	Day 5
	Metric embeddings
	Rounding the Leighton–Rao LP
	Bourgain's theorem
	Proof of the O(log|V|)-approximation algorithm
	Sharpness of this approximation algorithm
	End of class remark
	Bonus: Better approximation algorithms for sparsest cut

	Day 5 exercises
	Acknowledgments

