Part I. Theory

Problem 1 (Iserles, Exercise 3.4). Restricting your attention to scalar autonomous equations \(y' = f(y) \), prove that the ERK method with the tableau

\[
\begin{array}{c|ccc}
0 & 1 & 2 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 & 1 \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6}
\end{array}
\]

is of order four. (Note: This is a long calculation, so start early!)

Problem 2 (Iserles, Exercise 3.7). Write the theta method, (1.13), as a Runge–Kutta method.

Problem 3 (Iserles, Exercise 4.6). Evaluate explicitly the function \(r \) for the following Runge–Kutta methods:

\[
\begin{array}{c|ccc}
a. & 0 & 0 & 0 \\
& \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\
& \frac{1}{4} & \frac{3}{4} & \\

b. & \frac{1}{6} & 0 & 0 \\
& \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\
& \frac{1}{2} & \frac{1}{2} & \\

c. & 0 & 0 & 0 \\
& \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
& \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\
\end{array}
\]

Part II. Programming

Download the sample code, hw3.py, which contains implementations of Euler’s method (euler) and the explicit trapezoid rule (etrap). For etrap, observe that after computing \(x_{i1} = \xi_1 \) and \(x_{i2} = \xi_2 \), we immediately evaluate and store the function values \(f_1 = f(t_n + c_1 h, \xi_1) \) and \(f_2 = f(t_n + c_2 h, \xi_2) \). This lets us reuse these function values at later stages without having to evaluate \(f \) again. (Remember: function evaluation is expensive!)

Create functions implementing the following ERK methods:

- explicit midpoint: \(\text{emid}(f,t0,y0,h,N) \)
- classical 3-stage Runge–Kutta: \(\text{rk3}(f,t0,y0,h,N) \)
- RK4 (tableau given in Problem 1): \(\text{rk4}(f,t0,y0,h,N) \)

Problem 4. For this problem, you will be solving the scalar IVP

\[
y' = y, \quad y(0) = 1,
\]

numerically on the interval \([0, 1]\). The exact solution \(y(t) = e^t \) has \(y(1) = e = 2.7182818284590 \ldots \). Approximate \(e \) by solving this IVP with \(h = 0.01 \) for each of the following explicit Runge–Kutta methods:
Problem 5. The function `errorPlot(method)` applies `method` (which can be any function for solving ODEs) to solve the IVP from Problem 4 for various choices of `h`, then creates a log-log plot of the absolute error vs. `h`.

Create error plots for the methods `euler`, `emid`, `rk3` and `rk4`. What is the relationship between the plot and the order of each method?

Problem 6. The Lorenz system is a famous system of nonlinear ODEs, whose study (numerically, at first) helped launch Chaos Theory. Consider the system of ODEs

\[
\begin{align*}
 x' &= 10(y - x), \\
 y' &= x(28 - z) - y, \\
 z' &= xy - \frac{8}{3}z,
\end{align*}
\]

which is a special case of the Lorenz system. If \(\mathbf{y} = (x, y, z) \), then this is in the usual form \(\mathbf{y}' = \mathbf{f}(t, \mathbf{y}) \). Create a function `fLorenz(t,y)` corresponding to this \(\mathbf{f} \).

The function `lorenzPlot` uses your `rk4` and `fLorenz` to solve the Lorenz system for \(t \in [0,100] \), with \(\mathbf{y}_0 = (0,2,20) \), and creates a 3D plot of the numerical solution. Run `lorenzPlot()`, and print out your plot.