
Algebra I, Fall 2016

Solutions to Problem Set 1

3. Let aiK, i ∈ I, be all the distinct left cosets of K in G, and let bjH, j ∈ J, bj ∈ K
be all the left cosets of H in K. We show the aibjH, i ∈ I, j ∈ J are all the distinct
left cosets of H in G.

First, if aibjH = ai′bj′H, then b−1j a−1i ai′bj′ ∈ H ⊂ K, so

aibjK = ai′bj′K.

But bj , bj′ ∈ K, so bjK = bj′K = K, so the above equality gives aiK = ai′K,
therefore i = i′. And since aibjH = ai′bj′H, we have bjH = bj′H, so j = j′.

Second, if xH is a left cost of H in G, then xK = aiK for some i, so a−1i x ∈ K,
so a−1i xH = bjH for some j, so b−1j a−1i x ∈ H, so xH = aibjH.

4. Let H be the subgroupp generated by σ and τ . Since σ−1(i i+ 1)σ = (i− 1 i), all
cycles of length 2 of the form (i i+1), 1 ≤ i ≤ n−1, are in H. We prove by induction
on j − i, that every cycle of the form (i j), i < j, is in H. If j − i = 1, this is true by
the above argument. Assume the statement is true if j − i ≤ k − 1, then if j − i = k,
we have

(i j) = (i j − 1)(j − 1 j)(i j − 1),

so (i j) is also in H.
We have shown that every 2-cycle is in H, and since every cycles can be written

as a product of 2-cycles, it follows that every cycle is in H.

5. Every subgroup of an abelian group is normal. This exercise shows that the
converse is not true.

(i) Let I denote the identity matrix. We have A2 = −I, and so A3 = −A, and
A4 = I. Similarly, B2 = −I, so B3 = −B, and B4 = I. Therefore, A and B
are both of order 4. Also,

AB =

(
−i 0
0 i

)
= −BA.
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So the group generated byA andB has 8 elements {I,−I, A,A3, B,B3, AB,−AB}.
Clearly this is closed under inverse (A−1 = A3, B−1 = B3, (AB)−1 = (−AB),
and (−I)−1 = −I), and since AB = −BA, it is closed under multiplication.
The group G is not abelian. Since AB 6= BA.

(ii) Every non-trivial subgroup of G has order 2 or 4. Since every subgroup of order
4 has index 2, it is normal by Exercise 3. So we need to show all the subgroups
of order 2 are normal. Subgroups of order 2 are generated by elements of order
2, and G has only 2 elements of order 2: A2 and B2. Let G =< A2 >= {I,−I}.
For every C ∈ SL(2,C), C(−I)C−1 = −CC−1 = −I ∈ H. So H is normal.
Similarly the group generated by B2 is normal.

6. By the second isomorphism theorem, we have

HN/N ' H/H ∩N.

Denote by n the order of the above isomorphic groups. Then n||H| and since NH/N
is a subgroup of G/N , n divides |G/N | = [G : N ]. Since |H| and [G : N ] are relatively
prime, n = 1, so H ∩N = H and so H ≤ N .

7.

(i), (ii) Note that [a, b]−1 = [b, a] so G′ is the subset of G consisting of finite product of
commutators

G′ = {[a1, b1][a2, b2] . . . [an, bn]|ai, bi ∈ G,n ≥ 1}.

So to show that G′ is normal, it is enough to show for every c ∈ G, c−1[a, b]c ∈
G′. We can write

c−1[a, b]c = c−1a−1b−1abc = [c−1ac, c−1bc] ∈ G′.

so
c−1[a1, b1] . . . [an, bn]c = [c−1a1c, c

−1b1c] . . . [c
−1anc, c

−1bnc] ∈ G′.

Now we prove a more general statement: For any normal subgroup N of G,
G/N is abelian if and only if G′ is contained in N . We have G/N is abelian ⇔
aNbN = bNaN for all a, b ∈ G ⇔ abN = baN for all a, b ∈ G ⇔ a−1b−1ab ∈ N
for all ab ∈ G ⇔ G′ is a subset of N .
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(iii) Of course if G(m) = {e},

{e} = G(m) ≤ G(m−1) ≤ · · · ≤ G(0) = G

is an abelian tower.

Conversely if G is solvable and

{e} = Gm ≤ Gm−1 ≤ · · · ≤ G0 = G

is an abelian tower, then since G/G1 is abelian, by part (ii), G′ ⊂ G1, and since
G1/G2 is abelian, G′1 ⊂ G2, so G′′ ⊂ G2. Continuing this, we see that G(i) ⊂ Gi

for every i, and therefore, G(m) ⊂ Gm = {e}, so G is solvable.
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