Algebra I, Fall 2016

Solutions to Problem Set 1

3. Let $a_{i} K, i \in I$, be all the distinct left cosets of K in G, and let $b_{j} H, j \in J, b_{j} \in K$ be all the left cosets of H in K. We show the $a_{i} b_{j} H, i \in I, j \in J$ are all the distinct left cosets of H in G.

First, if $a_{i} b_{j} H=a_{i^{\prime}} b_{j^{\prime}} H$, then $b_{j}^{-1} a_{i}^{-1} a_{i^{\prime}} b_{j^{\prime}} \in H \subset K$, so

$$
a_{i} b_{j} K=a_{i^{\prime}} b_{j^{\prime}} K
$$

But $b_{j}, b_{j^{\prime}} \in K$, so $b_{j} K=b_{j^{\prime}} K=K$, so the above equality gives $a_{i} K=a_{i^{\prime}} K$, therefore $i=i^{\prime}$. And since $a_{i} b_{j} H=a_{i^{\prime}} b_{j^{\prime}} H$, we have $b_{j} H=b_{j^{\prime}} H$, so $j=j^{\prime}$.

Second, if $x H$ is a left cost of H in G, then $x K=a_{i} K$ for some i, so $a_{i}^{-1} x \in K$, so $a_{i}^{-1} x H=b_{j} H$ for some j, so $b_{j}^{-1} a_{i}^{-1} x \in H$, so $x H=a_{i} b_{j} H$.
4. Let H be the subgroupp generated by σ and τ. Since $\sigma^{-1}(i i+1) \sigma=(i-1 i)$, all cycles of length 2 of the form $(i i+1), 1 \leq i \leq n-1$, are in H. We prove by induction on $j-i$, that every cycle of the form $(i j), i<j$, is in H. If $j-i=1$, this is true by the above argument. Assume the statement is true if $j-i \leq k-1$, then if $j-i=k$, we have

$$
(i j)=(i j-1)(j-1 j)(i j-1),
$$

so $(i j)$ is also in H.
We have shown that every 2 -cycle is in H, and since every cycles can be written as a product of 2 -cycles, it follows that every cycle is in H.
5. Every subgroup of an abelian group is normal. This exercise shows that the converse is not true.
(i) Let I denote the identity matrix. We have $A^{2}=-I$, and so $A^{3}=-A$, and $A^{4}=I$. Similarly, $B^{2}=-I$, so $B^{3}=-B$, and $B^{4}=I$. Therefore, A and B are both of order 4. Also,

$$
A B=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)=-B A .
$$

So the group generated by A and B has 8 elements $\left\{I,-I, A, A^{3}, B, B^{3}, A B,-A B\right\}$. Clearly this is closed under inverse $\left(A^{-1}=A^{3}, B^{-1}=B^{3},(A B)^{-1}=(-A B)\right.$, and $\left.(-I)^{-1}=-I\right)$, and since $A B=-B A$, it is closed under multiplication. The group G is not abelian. Since $A B \neq B A$.
(ii) Every non-trivial subgroup of G has order 2 or 4 . Since every subgroup of order 4 has index 2, it is normal by Exercise 3. So we need to show all the subgroups of order 2 are normal. Subgroups of order 2 are generated by elements of order 2 , and G has only 2 elements of order 2 : A^{2} and B^{2}. Let $G=<A^{2}>=\{I,-I\}$. For every $C \in S L(2, \mathbf{C}), C(-I) C^{-1}=-C C^{-1}=-I \in H$. So H is normal. Similarly the group generated by B^{2} is normal.
6. By the second isomorphism theorem, we have

$$
H N / N \simeq H / H \cap N
$$

Denote by n the order of the above isomorphic groups. Then $n \| H \mid$ and since $N H / N$ is a subgroup of $G / N, n$ divides $|G / N|=[G: N]$. Since $|H|$ and $[G: N]$ are relatively prime, $n=1$, so $H \cap N=H$ and so $H \leq N$.
7.
(i), (ii) Note that $[a, b]^{-1}=[b, a]$ so G^{\prime} is the subset of G consisting of finite product of commutators

$$
G^{\prime}=\left\{\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right] \ldots\left[a_{n}, b_{n}\right] \mid a_{i}, b_{i} \in G, n \geq 1\right\}
$$

So to show that G^{\prime} is normal, it is enough to show for every $c \in G, c^{-1}[a, b] c \in$ G^{\prime}. We can write

$$
c^{-1}[a, b] c=c^{-1} a^{-1} b^{-1} a b c=\left[c^{-1} a c, c^{-1} b c\right] \in G^{\prime}
$$

so

$$
c^{-1}\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right] c=\left[c^{-1} a_{1} c, c^{-1} b_{1} c\right] \ldots\left[c^{-1} a_{n} c, c^{-1} b_{n} c\right] \in G^{\prime}
$$

Now we prove a more general statement: For any normal subgroup N of G, G / N is abelian if and only if G^{\prime} is contained in N. We have G / N is abelian \Leftrightarrow $a N b N=b N a N$ for all $a, b \in G \Leftrightarrow a b N=b a N$ for all $a, b \in G \Leftrightarrow a^{-1} b^{-1} a b \in N$ for all $a b \in G \Leftrightarrow G^{\prime}$ is a subset of N.
(iii) Of course if $G^{(m)}=\{e\}$,

$$
\{e\}=G^{(m)} \leq G^{(m-1)} \leq \cdots \leq G^{(0)}=G
$$

is an abelian tower.
Conversely if G is solvable and

$$
\{e\}=G_{m} \leq G_{m-1} \leq \cdots \leq G_{0}=G
$$

is an abelian tower, then since G / G_{1} is abelian, by part (ii), $G^{\prime} \subset G_{1}$, and since G_{1} / G_{2} is abelian, $G_{1}^{\prime} \subset G_{2}$, so $G^{\prime \prime} \subset G_{2}$. Continuing this, we see that $G^{(i)} \subset G_{i}$ for every i, and therefore, $G^{(m)} \subset G_{m}=\{e\}$, so G is solvable.

