Algebra I, Fall 2016

Solutions to Problem Set 1

3. Let a_iK , $i \in I$, be all the distinct left cosets of K in G, and let b_jH , $j \in J$, $b_j \in K$ be all the left cosets of H in K. We show the a_ib_jH , $i \in I$, $j \in J$ are all the distinct left cosets of H in G.

First, if $a_i b_j H = a_{i'} b_{j'} H$, then $b_j^{-1} a_{i'}^{-1} a_{i'} b_{j'} \in H \subset K$, so

$$a_i b_j K = a_{i'} b_{j'} K.$$

But $b_j, b_{j'} \in K$, so $b_j K = b_{j'} K = K$, so the above equality gives $a_i K = a_{i'} K$, therefore i = i'. And since $a_i b_j H = a_{i'} b_{j'} H$, we have $b_j H = b_{j'} H$, so j = j'.

Second, if xH is a left cost of H in G, then $xK = a_iK$ for some i, so $a_i^{-1}x \in K$, so $a_i^{-1}xH = b_jH$ for some j, so $b_j^{-1}a_i^{-1}x \in H$, so $xH = a_ib_jH$.

4. Let *H* be the subgroupp generated by σ and τ . Since $\sigma^{-1}(i \ i + 1)\sigma = (i - 1 \ i)$, all cycles of length 2 of the form $(i \ i + 1)$, $1 \le i \le n - 1$, are in *H*. We prove by induction on j - i, that every cycle of the form $(i \ j)$, i < j, is in *H*. If j - i = 1, this is true by the above argument. Assume the statement is true if $j - i \le k - 1$, then if j - i = k, we have

$$(i j) = (i j - 1)(j - 1 j)(i j - 1),$$

so (i j) is also in H.

We have shown that every 2-cycle is in H, and since every cycles can be written as a product of 2-cycles, it follows that every cycle is in H.

5. Every subgroup of an abelian group is normal. This exercise shows that the converse is not true.

(i) Let I denote the identity matrix. We have $A^2 = -I$, and so $A^3 = -A$, and $A^4 = I$. Similarly, $B^2 = -I$, so $B^3 = -B$, and $B^4 = I$. Therefore, A and B are both of order 4. Also,

$$AB = \begin{pmatrix} -i & 0\\ 0 & i \end{pmatrix} = -BA.$$

So the group generated by A and B has 8 elements $\{I, -I, A, A^3, B, B^3, AB, -AB\}$. Clearly this is closed under inverse $(A^{-1} = A^3, B^{-1} = B^3, (AB)^{-1} = (-AB),$ and $(-I)^{-1} = -I)$, and since AB = -BA, it is closed under multiplication. The group G is not abelian. Since $AB \neq BA$.

- (ii) Every non-trivial subgroup of G has order 2 or 4. Since every subgroup of order 4 has index 2, it is normal by Exercise 3. So we need to show all the subgroups of order 2 are normal. Subgroups of order 2 are generated by elements of order 2, and G has only 2 elements of order 2: A² and B². Let G =< A² >= {I, -I}. For every C ∈ SL(2, C), C(-I)C⁻¹ = -CC⁻¹ = -I ∈ H. So H is normal. Similarly the group generated by B² is normal.
- 6. By the second isomorphism theorem, we have

$$HN/N \simeq H/H \cap N.$$

Denote by n the order of the above isomorphic groups. Then n||H| and since NH/N is a subgroup of G/N, n divides |G/N| = [G : N]. Since |H| and [G : N] are relatively prime, n = 1, so $H \cap N = H$ and so $H \leq N$.

- 7.
- (i), (ii) Note that $[a, b]^{-1} = [b, a]$ so G' is the subset of G consisting of finite product of commutators

$$G' = \{ [a_1, b_1] [a_2, b_2] \dots [a_n, b_n] | a_i, b_i \in G, n \ge 1 \}.$$

So to show that G' is normal, it is enough to show for every $c \in G$, $c^{-1}[a, b]c \in G'$. We can write

$$c^{-1}[a,b]c = c^{-1}a^{-1}b^{-1}abc = [c^{-1}ac,c^{-1}bc] \in G'.$$

 \mathbf{SO}

$$c^{-1}[a_1, b_1] \dots [a_n, b_n] c = [c^{-1}a_1c, c^{-1}b_1c] \dots [c^{-1}a_nc, c^{-1}b_nc] \in G'$$

Now we prove a more general statement: For any normal subgroup N of G, G/N is abelian if and only if G' is contained in N. We have G/N is abelian $\Leftrightarrow aNbN = bNaN$ for all $a, b \in G \Leftrightarrow abN = baN$ for all $a, b \in G \Leftrightarrow a^{-1}b^{-1}ab \in N$ for all $ab \in G \Leftrightarrow G'$ is a subset of N.

(iii) Of course if $G^{(m)} = \{e\},\$

$$\{e\} = G^{(m)} \le G^{(m-1)} \le \dots \le G^{(0)} = G$$

is an abelian tower.

Conversely if G is solvable and

$$\{e\} = G_m \le G_{m-1} \le \dots \le G_0 = G$$

is an abelian tower, then since G/G_1 is abelian, by part (ii), $G' \subset G_1$, and since G_1/G_2 is abelian, $G'_1 \subset G_2$, so $G'' \subset G_2$. Continuing this, we see that $G^{(i)} \subset G_i$ for every i, and therefore, $G^{(m)} \subset G_m = \{e\}$, so G is solvable.