Algebra I, Fall 2016

Solutions to Problem Set 10

1. Let $\alpha=\frac{p(t)}{q(t)}$, such that $p(t), q(t) \in K[t]$ and $q(t) \neq 0$. We can assume $p(t)$ and $q(t)$ are relatively prime in $K[t]$. Suppose $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is the minimal polynomial of α over K. Then

$$
p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{1} p a^{n-1}+a_{0} q^{n}=0 .
$$

This implies that q divides p^{n} which is only possible if q is a constant (since the gcd of p and q is a unit in $K[t]$.) Also p divides $a_{0} q^{n}$ which is again possible only if $a_{0}=0$ or p is a constant. If $a_{0}=0$, then $f(x)=x\left(x^{n-1}+\cdots+a_{1}\right)$ which contradicts the fact that $f(x)$ is a minimal polynomial and is therefore irreducible. So p and q are both constants, so $\alpha \in K$.
2.
(i) $x^{2}-2$ is irreducible over \mathbf{Q}, and the roots are $\pm \sqrt{2}$, so the splitting field is $\mathbf{Q}(\sqrt{2})$ which is a degree 2 extension of \mathbf{Q}.
(ii) $x^{3}-2$ is irreducible over \mathbf{Q}. If ω is a complex third root of 1 (so a root of $x^{2}+x+1$), then the roots of $x^{3}-2$ are $\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}$. So if E is the splitting field of $x^{3}-2$, then $\omega \in E$, and $E=\mathbf{Q}(\sqrt[3]{2}, \omega)$. If $K=\mathbf{Q}(\sqrt[3]{2})$, then $[K: \mathbf{Q}]=3$, and $x^{2}+x+1$ is irreducible over K since $\omega \notin \mathbf{Q}(\sqrt[3]{2})$, so $[E: \mathbf{Q}]=6$.
(iii) $x^{2}+x+1$ is irreducible over \mathbf{Q}. The roots are ω and ω^{2}, so the splitting field is $\mathbf{Q}(\omega)$ which is of degree 2 over \mathbf{Q}.
3. If \bar{K} is the algebraic closure of K, then every $\alpha \in \bar{K}$ is the root of a polynomial in K, but there are countably many such polynomials, and each such polynomial has finitely many roots, so the roots of all polynomials in $K[x]$ form a countable set. Note that a finite field F cannot be algebraically closed since if $F=\left\{a_{1}, \ldots, a_{n}\right\}$, then the
polynomial $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+1$ has no root in F. So \bar{K} is not finite.
4. Let $a \in F$, and consider the splitting field E of $f(x)=x^{p}-a$ over F. Then E is of characteristic p. Let $b \in E$ be a root of this polynomial. then $b^{p}=a$, so

$$
f(x)=x^{p}-a=x^{p}-b^{p}=(x-b)^{p} .
$$

So the only root of $f(x)$ in E is b. Now if

$$
f(x)=f_{1}(x) \ldots f_{k}(x)
$$

is the factorization of f into irreducible polynomials in $F[x]$, then since f is separable, each f_{i} should be separable, so f_{i} cannot have repeated roots, but the only root of each of the f_{i} is b, so each b_{i} has to be of degree 1 in $F[x]$. Therefore the root b of these degree 1 polynomials should be also in F, hence $b \in F$.

