9. (a)
$$g(2,-1) = \cos(2+2(-1)) = \cos(0) = 1$$

- (b) x + 2y is defined for all choices of values for x and y and the cosine function is defined for all input values, so the domain of g is \mathbb{R}^2 .
- (c) The range of the cosine function is [-1, 1] and x + 2y generates all possible input values for the cosine function, so the range of $\cos(x + 2y)$ is [-1, 1].

10. (a)
$$F(3,1) = 1 + \sqrt{4-1^2} = 1 + \sqrt{3}$$

(b) $\sqrt{4-y^2}$ is defined only when $4-y^2\geq 0$, or $y^2\leq 4 \Leftrightarrow$ $-2\leq y\leq 2$. So the domain of F is $\{(x,y)\,|\, -2\leq y\leq 2\}$.

13. $\sqrt{x-2}$ is defined only when $x-2\geq 0$, or $x\geq 2$, and $\sqrt{y-1}$ is defined only when $y-1\geq 0$, or $y\geq 1$. So the domain of f is $\{(x,y)\mid x\geq 2,\ y\geq 1\}.$

19. $\sqrt{y-x^2}$ is defined only when $y-x^2\geq 0$, or $y\geq x^2$. In addition, f is not defined if $1-x^2=0$ \Leftrightarrow $x=\pm 1$. Thus the domain of f is $\big\{(x,y)\mid y\geq x^2,\; x\neq \pm 1\big\}.$

20. $\sin^{-1}(x+y)$ is defined only when $-1 \le x+y \le 1 \iff -1-x \le y \le 1-x$. Thus the domain of f is $\{(x,y) \mid -1-x \le y \le 1-x\}$, consisting of those points on or between the parallel lines y=-1-x and y=1-x.

45. The level curves are $x^2-y^2=k$. When k=0 the level curve is the pair of lines $y=\pm x$, and when $k\neq 0$ the level curves are a family of hyperbolas (oriented differently for k>0 than for k<0).

47. The level curves are $\sqrt{x}+y=k$ or $y=-\sqrt{x}+k$, a family of vertical translations of the graph of the root function $y=-\sqrt{x}$.

46. The level curves are xy=k or y=k/x. When $k\neq 0$ the level curves are a family of hyperbolas. When k=0 the level curve is the pair of lines x=0, y=0.

48. The level curves are $\ln(x^2 + 4y^2) = k$ or $x^2 + 4y^2 = e^k$, a family of ellipses.

- **72.** (a) The graph of g is the graph of f shifted 2 units in the positive x-direction.
 - (b) The graph of g is the graph of f shifted 2 units in the negative y-direction.
 - (c) The graph of g is the graph of f shifted 3 units in the negative x-direction and 4 units in the positive y-direction.