- 7. $\partial (ye^x + \sin y)/\partial y = e^x + \cos y = \partial (e^x + x\cos y)/\partial x$ and the domain of \mathbf{F} is \mathbb{R}^2 . Hence \mathbf{F} is conservative so there exists a function f such that $\nabla f = \mathbf{F}$. Then $f_x(x,y) = ye^x + \sin y$ implies $f(x,y) = ye^x + x\sin y + g(y)$ and $f_y(x,y) = e^x + x\cos y + g'(y)$. But $f_y(x,y) = e^x + x\cos y$ so g(y) = K and $f(x,y) = ye^x + x\sin y + K$ is a potential function for \mathbf{F} .
- 11. (a) **F** has continuous first-order partial derivatives and $\frac{\partial}{\partial y}(2xy) = 2x = \frac{\partial}{\partial x}(x^2)$ on \mathbb{R}^2 , which is open and simply-connected. Thus, **F** is conservative by Theorem 6. Then we know that the line integral of **F** is independent of path; in particular, the value of $\int_C \mathbf{F} \cdot d\mathbf{r}$ depends only on the endpoints of C. Since all three curves have the same initial and terminal points, $\int_C \mathbf{F} \cdot d\mathbf{r}$ will have the same value for each curve.
 - (b) We first find a potential function f, so that $\nabla f = \mathbf{F}$. We know $f_x(x,y) = 2xy$ and $f_y(x,y) = x^2$. Integrating $f_x(x,y)$ with respect to x, we have $f(x,y) = x^2y + g(y)$. Differentiating both sides with respect to y gives $f_y(x,y) = x^2 + g'(y)$, so we must have $x^2 + g'(y) = x^2 \implies g'(y) = 0 \implies g(y) = K$, a constant. Thus $f(x,y) = x^2y + K$, and we can take K = 0. All three curves start at (1,2) and end at (3,2), so by Theorem 2, $\int_C \mathbf{F} \cdot d\mathbf{r} = f(3,2) f(1,2) = 18 2 = 16$ for each curve.
 - **15.** (a) $f_x(x,y,z) = yz$ implies f(x,y,z) = xyz + g(y,z) and so $f_y(x,y,z) = xz + g_y(y,z)$. But $f_y(x,y,z) = xz$ so $g_y(y,z) = 0 \implies g(y,z) = h(z)$. Thus f(x,y,z) = xyz + h(z) and $f_z(x,y,z) = xy + h'(z)$. But $f_z(x,y,z) = xy + 2z$, so $h'(z) = 2z \implies h(z) = z^2 + K$. Hence $f(x,y,z) = xyz + z^2$ (taking K = 0).

 (b) $\int_C \mathbf{F} \cdot d\mathbf{r} = f(4,6,3) f(1,0,-2) = 81 4 = 77$.
- 19. The functions $2xe^{-y}$ and $2y-x^2e^{-y}$ have continuous first-order derivatives on \mathbb{R}^2 and $\frac{\partial}{\partial y}\left(2xe^{-y}\right)=-2xe^{-y}=\frac{\partial}{\partial x}\left(2y-x^2e^{-y}\right)$, so $\mathbf{F}(x,y)=2xe^{-y}\,\mathbf{i}+\left(2y-x^2e^{-y}\right)\,\mathbf{j}$ is a conservative vector field by Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and $f_x(x,y)=2xe^{-y}$ implies $f(x,y)=x^2e^{-y}+g(y)$ and $f_y(x,y)=-x^2e^{-y}+g'(y)$. But $f_y(x,y)=2y-x^2e^{-y}$ so $g'(y)=2y \Rightarrow g(y)=y^2+K$. We can take K=0, so $f(x,y)=x^2e^{-y}+y^2$. Then $\int_C 2xe^{-y}\,dx+(2y-x^2e^{-y})\,dy=f(2,1)-f(1,0)=4e^{-1}+1-1=4/e.$
 - 25. We know that if the vector field (call it \mathbf{F}) is conservative, then around any closed path C, $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$. But take C to be a circle centered at the origin, oriented counterclockwise. All of the field vectors that start on C are roughly in the direction of motion along C, so the integral around C will be positive. Therefore the field is not conservative.

- 29. Since ${\bf F}$ is conservative, there exists a function f such that ${\bf F}=\nabla f$, that is, $P=f_x, Q=f_y$, and $R=f_z$. Since P, Q, and R have continuous first order partial derivatives, Clairaut's Theorem says that $\partial P/\partial y=f_{xy}=f_{yx}=\partial Q/\partial x$, $\partial P/\partial z=f_{xz}=f_{zx}=\partial R/\partial x$, and $\partial Q/\partial z=f_{yz}=f_{zy}=\partial R/\partial y$.
- **30.** Here $\mathbf{F}(x, y, z) = y \mathbf{i} + x \mathbf{j} + xyz \mathbf{k}$. Then using the notation of Exercise 29, $\partial P/\partial z = 0$ while $\partial R/\partial x = yz$. Since these aren't equal, \mathbf{F} is not conservative. Thus by Theorem 4, the line integral of \mathbf{F} is not independent of path.

35. (a)
$$P = -\frac{y}{x^2 + y^2}$$
, $\frac{\partial P}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$ and $Q = \frac{x}{x^2 + y^2}$, $\frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$. Thus $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

(b) C_1 : $x = \cos t$, $y = \sin t$, $0 \le t \le \pi$, C_2 : $x = \cos t$, $y = \sin t$, $t = 2\pi$ to $t = \pi$. Then

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi} \frac{(-\sin t)(-\sin t) + (\cos t)(\cos t)}{\cos^2 t + \sin^2 t} dt = \int_0^{\pi} dt = \pi \text{ and } \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{2\pi}^{\pi} dt = -\pi$$

Since these aren't equal, the line integral of ${\bf F}$ isn't independent of path. (Or notice that $\int_{C_3} {\bf F} \cdot d{\bf r} = \int_0^{2\pi} dt = 2\pi$ where C_3 is the circle $x^2 + y^2 = 1$, and apply the contrapositive of Theorem 3.) This doesn't contradict Theorem 6, since the domain of ${\bf F}$, which is \mathbb{R}^2 except the origin, isn't simply-connected.