Algebra I, Fall 2016

Solutions to Problem Set 2

2. There is a surjective map $\phi: H_{1} \times H_{2} \rightarrow H_{1} H_{2}$ which sends (a, b) to $a b$. Two elements (a_{1}, b_{1}) and (a_{2}, b_{2}) are mapped to the same element if $a_{1} b_{1}=a_{2} b_{2}$, so $a_{2}^{-1} a_{1}=b_{2} b_{1}^{-1}$ and since the right hand side is in H_{2} and the left hand side is in $H_{1}, c:=a_{2}^{-1} a_{1}=b_{2} b_{1}^{-1} \in H_{1} \cap H_{2}$ and $\left(a_{2}, b_{2}\right)=\left(a_{1} c^{-1}, c b_{1}\right)$. Conversely for every element $x \in H_{1} \cap H_{2}$,

$$
\phi\left(a_{1}, b_{1}\right)=\phi\left(a_{1} x^{-1}, x b_{1}\right) .
$$

So for every (a, b) in $H_{1} \times H_{2}$, there are $\left|H_{1} \cap H_{2}\right|$ elements in $H_{1} \times H_{2}$ which are mapped to $\phi(a, b)$, so

$$
\left|H_{1} H_{2}\right|=\frac{\left|H_{1} \times H_{2}\right|}{\left|H_{1} \cap H_{2}\right|} .
$$

3. The number of distinct conjugates of H is equal to $\left[G: N_{G}(H)\right]=\frac{|G|}{\left|N_{G}(H)\right|}$ Since $\left|N_{G}(H)\right| \geq|H|$ and since all the conjugates of H contain the identity element of the group we have

$$
\left|\bigcup_{g} g H g^{-1}\right| \leq 1+\left(\frac{|G|}{\left|N_{G}(H)\right|}\right)(|H|-1) \leq 1+\left(\frac{|G|}{|H|}\right)(|H|-1)=|G|+1-\frac{|G|}{|H|}<|G|
$$

since H is a proper subgroup.
4. G acts on N by conjugation. For $x \in N$, the orbit of x has only one element if and only if $g x g^{-1}=x$ for all g, that is if $g x=x g$ for all g, that is if $x \in Z(G)$. If the orbit of x has more than one element then $\left|O_{x}\right|$ is a divisors of p^{n} as it is equal to $\frac{|G|}{\left|G_{x}\right|}$, and is therefore a multiple of p. We have
$|N|=($ number of orbits of size 1$)+($ the sum of the sizes of distinct orbits of size $>1)$.
The number in the second parenthesis is a multiple of p and so is the left hand side of the equation, so the number in the first parenthesis should be also a multiple of p, so $|N \cap Z(G)|$ should be a multiple of p, but there are p elements in N, so $N \subset Z(G)$.
5. Let F_{g} be the number of elements in X which are fixed by G, and assume to the contrary that $F_{g} \geq 1$ for all g in G. We have proved that the number of distinct orbits for the action of G on X is equal to

$$
\frac{1}{|G|} \sum_{g \in G} F_{g}
$$

Since the action is transitive, there is only one orbit, so we have

$$
|G|=\sum_{g \in G} F_{g}=F_{e}+\sum_{e \neq g \in G} F_{g}=|X|+\sum_{e \neq g \in G} F_{g} \geq|X|+(|G|-1)
$$

which is not possible since $|X| \geq 2$.
6. Consider the map $\phi: G \rightarrow S_{G}$ which sends g to the permutation ϕ_{g} where

$$
\phi_{g}(x)=g x
$$

Clearly this is a group homomorphism:

$$
\phi_{g_{1} g_{2}}(x)=\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right)=\phi_{g_{1}}\left(\phi_{g_{2}}(x)\right)=\phi_{g_{1}} \circ \phi_{g_{2}}(x)
$$

The kernel of ϕ consists of all g such that $\phi_{g}(x)=x$ for all x, that is $g x=x$ for all x, so $g=e$.
7. As we have seen in class, there is a group homomorphism $\phi: G \rightarrow \operatorname{Aut}(\mathrm{G})$ such that $\phi(g)$ is the automorphism which sends x to $g x g^{-1}$ for every $x \in G$. The kernel of ϕ is exactly the center of the group, $Z(G)$.

By the first isomorphism theorem, $G / Z(G)$ is isomorphic to the image of ϕ which is a subgroup of a cyclic group, and is therefore cyclic. So $G / Z(G)$ is cyclic. Assume $G / Z(G)$ is generated by the left cost $a Z(G)$. Then every element of G is of the form $a^{r} z$ for some $z \in Z(G)$ and some integer r. So to show the group is commutative it is enough to show that any two elements of the form $a^{r} z_{1}$ and $a^{s} z_{2}$ commute when z_{1} and z_{2} are in the center of the group. We have

$$
a^{r} z_{1} a^{s} z_{2}=a^{r} a^{s} z_{1} z_{2}=a^{r} a^{s} z_{2} z_{1}=a^{s} a^{r} z_{2} z_{1}=a^{s} z_{2} a^{r} z_{1}
$$

