Algebra I, Fall 2016

Solutions to Problem Set 2

2. There is a surjective map $\phi : H_1 \times H_2 \to H_1H_2$ which sends (a, b) to ab. Two elements (a_1, b_1) and (a_2, b_2) are mapped to the same element if $a_1b_1 = a_2b_2$, so $a_2^{-1}a_1 = b_2b_1^{-1}$ and since the right hand side is in H_2 and the left hand side is in $H_1, c := a_2^{-1}a_1 = b_2b_1^{-1} \in H_1 \cap H_2$ and $(a_2, b_2) = (a_1c^{-1}, cb_1)$. Conversely for every element $x \in H_1 \cap H_2$,

$$\phi(a_1, b_1) = \phi(a_1 x^{-1}, x b_1).$$

So for every (a, b) in $H_1 \times H_2$, there are $|H_1 \cap H_2|$ elements in $H_1 \times H_2$ which are mapped to $\phi(a, b)$, so

$$|H_1H_2| = \frac{|H_1 \times H_2|}{|H_1 \cap H_2|}.$$

3. The number of distinct conjugates of H is equal to $[G : N_G(H)] = \frac{|G|}{|N_G(H)|}$ Since $|N_G(H)| \ge |H|$ and since all the conjugates of H contain the identity element of the group we have

$$\left|\bigcup_{g} gHg^{-1}\right| \le 1 + \left(\frac{|G|}{|N_{G}(H)|}\right) \left(|H| - 1\right) \le 1 + \left(\frac{|G|}{|H|}\right) \left(|H| - 1\right) = |G| + 1 - \frac{|G|}{|H|} < |G|$$

since H is a proper subgroup.

4. G acts on N by conjugation. For $x \in N$, the orbit of x has only one element if and only if $gxg^{-1} = x$ for all g, that is if gx = xg for all g, that is if $x \in Z(G)$. If the orbit of x has more than one element then $|O_x|$ is a divisors of p^n as it is equal to $\frac{|G|}{|G_x|}$, and is therefore a multiple of p. We have

|N| =(number of orbits of size 1)+(the sum of the sizes of distinct orbits of size > 1).

The number in the second parenthesis is a multiple of p and so is the left hand side of the equation, so the number in the first parenthesis should be also a multiple of p, so $|N \cap Z(G)|$ should be a multiple of p, but there are p elements in N, so $N \subset Z(G)$.

5. Let F_g be the number of elements in X which are fixed by G, and assume to the contrary that $F_g \ge 1$ for all g in G. We have proved that the number of distinct orbits for the action of G on X is equal to

$$\frac{1}{|G|} \sum_{g \in G} F_g$$

Since the action is transitive, there is only one orbit, so we have

$$|G| = \sum_{g \in G} F_g = F_e + \sum_{e \neq g \in G} F_g = |X| + \sum_{e \neq g \in G} F_g \ge |X| + (|G| - 1)$$

which is not possible since $|X| \ge 2$.

6. Consider the map $\phi: G \to S_G$ which sends g to the permutation ϕ_q where

$$\phi_g(x) = gx$$

Clearly this is a group homomorphism:

$$\phi_{g_1g_2}(x) = (g_1g_2)x = g_1(g_2x) = \phi_{g_1}(\phi_{g_2}(x)) = \phi_{g_1} \circ \phi_{g_2}(x).$$

The kernel of ϕ consists of all g such that $\phi_g(x) = x$ for all x, that is gx = x for all x, so g = e.

7. As we have seen in class, there is a group homomorphism $\phi : G \to \operatorname{Aut}(G)$ such that $\phi(g)$ is the automorphism which sends x to gxg^{-1} for every $x \in G$. The kernel of ϕ is exactly the center of the group, Z(G).

By the first isomorphism theorem, G/Z(G) is isomorphic to the image of ϕ which is a subgroup of a cyclic group, and is therefore cyclic. So G/Z(G) is cyclic. Assume G/Z(G) is generated by the left cost aZ(G). Then every element of G is of the form $a^r z$ for some $z \in Z(G)$ and some integer r. So to show the group is commutative it is enough to show that any two elements of the form $a^r z_1$ and $a^s z_2$ commute when z_1 and z_2 are in the center of the group. We have

$$a^r z_1 a^s z_2 = a^r a^s z_1 z_2 = a^r a^s z_2 z_1 = a^s a^r z_2 z_1 = a^s z_2 a^r z_1.$$