Algebra I, Fall 2016

Solutions to Problem Set 4

1. Let $S_{i}(i \in \mathbf{Z})$ be the element of $\oplus_{n \in \mathbf{Z}} \mathbf{Z}_{2}$ whose i-th component is 1 and the other components are zero. We show the two elements $(0,1)$ and $\left(S_{0}, 0\right)$ generate the group. Let H be the subgroup generated by these two elements. It is enough to show for every integers n and $m,\left(S_{m}, n\right) \in H$. Of course $(0, l) \in H$ for every integer l, and we have

$$
\left(S_{0}, 0\right)(0, l)=\left(S_{0}, l\right)
$$

so elements of the form $\left(S_{0}, l\right)$ are in H, and

$$
(0, m)\left(S_{0}, n-m\right)=\left(S_{m}, n\right)
$$

2. Assume that H is a finite subgroup of \mathbf{Q} / \mathbf{Z}. First note that if $\frac{a}{b}+\mathbf{Z} \in H$ where $\operatorname{gcd}(a, b)=1$, then $\frac{1}{b}+\mathbf{Z} \in H$: since $\operatorname{gcd}(a, b)=1$, there are integers x and y such that $a x+b y=1$, so $\frac{x a}{b}+\mathbf{Z}=\frac{1}{b}+\mathbf{Z}$.

Now let

$$
c_{0}=\max \left\{c: \frac{1}{c}+\mathbf{Z} \in H\right\} .
$$

We show that H is generated by $\frac{1}{c_{0}}+\mathbf{Z}$. If $\frac{a}{b}+\mathbf{Z}$ is in H with $\operatorname{gcd}(a, b)=1$, then $\frac{1}{b}+\mathbf{Z} \in H$. It is enough to show c_{0} is a multiple of b. Let $d=\operatorname{gcd}\left(c_{0}, b\right)$, then $c_{0}=c^{\prime} d$ and $b=b^{\prime} d$, and there are integers x and y such that $x c_{0}+y b=d$. Since $\frac{1}{b}+\mathbf{Z} \in H$ and $\frac{1}{c_{0}}+\mathbf{Z} \in H$,

$$
\frac{1}{b^{\prime} c_{0}}+\mathbf{Z}=\left(\frac{x}{b}+\frac{y}{c_{0}}\right)+\mathbf{Z} \in H,
$$

so $b^{\prime} c_{0} \leq c_{0}$, so $b^{\prime}=1$, and b divides c_{0}.
Therefore, the only subgroup of \mathbf{Q} / \mathbf{Z} of order n is the subgroup generated by $\frac{1}{n}+\mathbf{Z}$.
3. It is enough to prove the statement for finite abelian p-groups for a prime number p, since if $G \cong G_{1} \oplus \cdots \oplus G_{m}$ where G_{i} is a p_{i}-group and the p_{i} are distinct prime
numbers, and if $H \cong H_{1} \oplus \cdots \oplus H_{m}$ where H_{i} is a p_{i}-group, then $H_{i} \leq G_{i}$, and $G / H \cong G_{1} / H_{1} \oplus \cdots \oplus G_{m} / H_{m}$.

Assume G is a p-group, so G / H is a p-group too. Let

$$
G \cong \mathbf{Z}_{p^{r_{1}}} \oplus \cdots \oplus \mathbf{Z}_{p^{r_{n}}} \quad r_{1} \geq \cdots \geq r_{n}
$$

and

$$
G / H \cong \mathbf{Z}_{p^{d_{1}}} \oplus \cdots \oplus \mathbf{Z}_{p^{d_{m}}} \quad d_{1} \geq \cdots \geq d_{m}
$$

It is enough to show $r_{i} \geq d_{i}$ for every i, because in this case $\mathbf{Z}_{p^{r_{i}}}$ has a subgroup A_{i} isomorphic to $\mathbf{Z}_{p^{d_{i}}}$. (since they are both cyclic.), and $A=A_{1} \oplus \cdots \oplus A_{r}$ is a subgroup of G which is isomorphic to G / H.

Now let G_{k} be the subgroup of G which consists of elements of order at most r_{k}, and let H_{k} / H be the subgroup of G / H which consists of elements of order at most r_{k} (so $G_{k} \subset H_{k}$). Then G / G_{k} is generated by at most $k-1$ elements. (corresponding to the cosets generated by the generators of the factors $\left.\mathbf{Z}_{p^{r_{1}}}, \ldots, \mathbf{Z}_{p^{r_{k-1}}}\right)$. Since the quotient of G / H by H_{k} / H is isomorphic to G / H_{k} and since there is an onto homomorphism $G / G_{k} \rightarrow G / H_{k}$, we conclude that the quotient of G / H by H_{k} / H is also generated by at most $k-1$ elements. So there are at most $k-1$ of the d_{i} which are larger than r_{k}, so $d_{k} \leq r_{k}$.
5. We first compute the number of elements in the group: The first column of a matrix in $G L(2, F)$ could be anything except for both entries zero so there are $\left(p^{2}-1\right)$ possibilities. The second column now could be anything except for scalar multiples of the first column, that gives $p^{2}-p$ choices of the second column for every first column. So the total number is $\left(p^{2}-1\right)\left(p^{2}-p\right)$, so a p-Sylow subgroup has order p. Now it is easy to see matrices of the form

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \quad a \in F
$$

form a subgroup of order p.
6. Assume G is a non-cyclic group of order $2 p$. We can assume $p \neq 2$. Let a be an element of order p and let b be an element of order 2 . Then

$$
e, a, a^{2}, \ldots, a^{n-1}, b, a b, a^{2} b, \ldots, a^{n-1} b
$$

are all distinct (note that every $a^{i}, 1 \leq i \leq n-1$ has order p, and so $a^{i} b \neq a^{j}$ for every i and j since otherwise, $b=a^{j-i}$). So they form all the elements of G. To show that G is isomorphic to $D_{2 p}$, it is enough to show that $b a=a^{n-1} b$. Then the morphism $\phi: G \rightarrow D_{2 p}, \phi\left(a^{i}\right)=\omega^{i}$ and $\phi(b)=r$ would be a group homomorphism.

Of course, $b a$ cannot be equal to any of the a^{i}. Assume $b a=a^{i} b$. Then the order of $b a$ is either p or 2 . If the order of $b a$ is 2 , then we have

$$
e=(b a)(b a)=\left(a^{i} b\right)(b a)=a^{i+1},
$$

so $i=n-1$. If the order of $b a$ is $p=2 k$, then

$$
e=(b a)^{p}=(b a)\left(a^{i} b b a\right)^{k}=b a a^{(i+1) k}=b a^{1+(i+1) k} .
$$

Therefore, b is equal to a power of a which is not possible.

