Algebra I, Fall 2016

Solutions to Problem Set 4

1. Let S_i $(i \in \mathbf{Z})$ be the element of $\bigoplus_{n \in \mathbf{Z}} \mathbf{Z}_2$ whose *i*-th component is 1 and the other components are zero. We show the two elements (0, 1) and $(S_0, 0)$ generate the group. Let H be the subgroup generated by these two elements. It is enough to show for every integers n and m, $(S_m, n) \in H$. Of course $(0, l) \in H$ for every integer l, and we have

$$(S_0, 0)(0, l) = (S_0, l)_{l}$$

so elements of the form (S_0, l) are in H, and

$$(0,m)(S_0,n-m) = (S_m,n).$$

2. Assume that *H* is a finite subgroup of \mathbf{Q}/\mathbf{Z} . First note that if $\frac{a}{b} + \mathbf{Z} \in H$ where gcd(a, b) = 1, then $\frac{1}{b} + \mathbf{Z} \in H$: since gcd(a, b) = 1, there are integers *x* and *y* such that ax + by = 1, so $\frac{xa}{b} + \mathbf{Z} = \frac{1}{b} + \mathbf{Z}$.

Now let

$$c_0 = \max\{c : \frac{1}{c} + \mathbf{Z} \in H\}.$$

We show that H is generated by $\frac{1}{c_0} + \mathbf{Z}$. If $\frac{a}{b} + \mathbf{Z}$ is in H with gcd(a, b) = 1, then $\frac{1}{b} + \mathbf{Z} \in H$. It is enough to show c_0 is a multiple of b. Let $d = gcd(c_0, b)$, then $c_0 = c'd$ and b = b'd, and there are integers x and y such that $xc_0 + yb = d$. Since $\frac{1}{b} + \mathbf{Z} \in H$ and $\frac{1}{c_0} + \mathbf{Z} \in H$,

$$\frac{1}{b'c_0} + \mathbf{Z} = \left(\frac{x}{b} + \frac{y}{c_0}\right) + \mathbf{Z} \in H,$$

so $b'c_0 \leq c_0$, so b' = 1, and b divides c_0 .

Therefore, the only subgroup of \mathbf{Q}/\mathbf{Z} of order *n* is the subgroup generated by $\frac{1}{n} + \mathbf{Z}$.

3. It is enough to prove the statement for finite abelian *p*-groups for a prime number p, since if $G \cong G_1 \oplus \cdots \oplus G_m$ where G_i is a p_i -group and the p_i are distinct prime

numbers, and if $H \cong H_1 \oplus \cdots \oplus H_m$ where H_i is a p_i -group, then $H_i \leq G_i$, and $G/H \cong G_1/H_1 \oplus \cdots \oplus G_m/H_m$.

Assume G is a p-group, so G/H is a p-group too. Let

$$G \cong \mathbf{Z}_{p^{r_1}} \oplus \cdots \oplus \mathbf{Z}_{p^{r_n}} \quad r_1 \ge \cdots \ge r_n,$$

and

$$G/H \cong \mathbf{Z}_{p^{d_1}} \oplus \cdots \oplus \mathbf{Z}_{p^{d_m}} \quad d_1 \ge \cdots \ge d_m.$$

It is enough to show $r_i \ge d_i$ for every *i*, because in this case $\mathbf{Z}_{p^{r_i}}$ has a subgroup A_i isomorphic to $\mathbf{Z}_{p^{d_i}}$. (since they are both cyclic.), and $A = A_1 \oplus \cdots \oplus A_r$ is a subgroup of *G* which is isomorphic to G/H.

Now let G_k be the subgroup of G which consists of elements of order at most r_k , and let H_k/H be the subgroup of G/H which consists of elements of order at most r_k (so $G_k \subset H_k$). Then G/G_k is generated by at most k-1 elements. (corresponding to the cosets generated by the generators of the factors $\mathbf{Z}_{p^{r_1}}, \ldots, \mathbf{Z}_{p^{r_{k-1}}}$). Since the quotient of G/H by H_k/H is isomorphic to G/H_k and since there is an onto homomorphism $G/G_k \to G/H_k$, we conclude that the quotient of G/H by H_k/H is also generated by at most k-1 elements. So there are at most k-1 of the d_i which are larger than r_k , so $d_k \leq r_k$.

5. We first compute the number of elements in the group: The first column of a matrix in GL(2, F) could be anything except for both entries zero so there are (p^2-1) possibilities. The second column now could be anything except for scalar multiples of the first column, that gives $p^2 - p$ choices of the second column for every first column. So the total number is $(p^2 - 1)(p^2 - p)$, so a *p*-Sylow subgroup has order *p*. Now it is easy to see matrices of the form

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \quad a \in F$$

form a subgroup of order p.

6. Assume G is a non-cyclic group of order 2p. We can assume $p \neq 2$. Let a be an element of order p and let b be an element of order 2. Then

$$e, a, a^2, \dots, a^{n-1}, b, ab, a^2b, \dots, a^{n-1}b$$

are all distinct (note that every a^i , $1 \le i \le n-1$ has order p, and so $a^i b \ne a^j$ for every i and j since otherwise, $b = a^{j-i}$). So they form all the elements of G. To show that G is isomorphic to D_{2p} , it is enough to show that $ba = a^{n-1}b$. Then the morphism $\phi: G \to D_{2p}, \phi(a^i) = \omega^i$ and $\phi(b) = r$ would be a group homomorphism.

Of course, ba cannot be equal to any of the a^i . Assume $ba = a^i b$. Then the order of ba is either p or 2. If the order of ba is 2, then we have

$$e = (ba)(ba) = (a^i b)(ba) = a^{i+1},$$

so i = n - 1. If the order of ba is p = 2k, then

$$e = (ba)^p = (ba)(a^i bba)^k = baa^{(i+1)k} = ba^{1+(i+1)k}.$$

Therefore, b is equal to a power of a which is not possible.