Algebra I, Fall 2016

Solutions to Problem Set 5

1. (a) IF $a b \in I=f^{-1}(P)$, then $f(a b) \in P$, so $f(a) f(b) \in P$, so $f(a) \in P$ or $f(b) \in P$, so $a \in f^{-1}(P)$ or $b \in f^{-1} f(P)$.
(b) For example, if f is the inclusion of \mathbf{Z} in \mathbf{Q}, then since \mathbf{Q} is a field, $\{0\}$ is maximal ideal, but $f^{-1}(\{0\})=\{0\}$ which is not a maximal ideal in \mathbf{Z}.
2. (c) We can get an example by letting $I=J$. For example if $I=J=2 \mathbf{Z}$ in \mathbf{Z}, then $I J=4 \mathbf{Z}$, but $I \cap J=2 \mathbf{Z}$.
3. Let P be a prime ideal and a an element of R which is not in P. Then since R is finite, the elements $\left\{1, a, a^{2}, \ldots\right\}$ cannot be all distinct, so there is $i<j$ such that $a^{i}=a^{j}$ so $a^{i}\left(1-a^{j}\right)=0$, since P is prime and $0 \in P, a^{i} \in P$ or $\left(1-a^{j}\right) \in P$. But a^{i} cannot be in P since a is not in P, so $1-a^{j-i} \in P$. This implies the ideal generated by P and a contains 1 , therefore, $(P, a)=R$ for every a which is not in P. This means P is a maximal ideal.
4. Let P be a maximal ideal among those whose intersection with S is non-empty. Let $a b \in P$. We get a contradiction by assuming a and b are not in S. Since a is not in S, the ideal $I=(P, a)=\{x+r a \mid r \in R, x \in P\}$ contains P but is not equal to P, so $I \cap S \neq \emptyset$, so there is s_{1} of the form

$$
s_{1}=r_{1} a+x_{1}
$$

in S. Similarly, if we look at ideal generated by P and $b: J=(P, b)$, we see that there should be an element

$$
s_{2}=r_{2} b+x_{2}
$$

in S. Since S is multiplicative $s_{1} s_{2} \in S$, so $y=r_{1} r_{2} a b+r_{1} x_{2}+r_{2} x_{1}+x_{1} x_{2}$ is in S, but y is in P since $a b, x_{1}, x_{2} \in P$, contradicting the assumption that $S \cap P=\emptyset$.
6. (a) Primary ideals of \mathbf{Z} are the ideals of the form $p^{n} \mathbf{Z}$ for a prime number p and a positive integer n : if p^{n} divides $a b$, then $p \mid a$, or $p \mid b$, so p^{n} divides a or p^{n} divides b^{n}.
(b) If I is primary and $a b \in \sqrt{I}$, then $(a b)^{n} \in I$ for some $n \geq 1$, so $a^{n} \in I$ or $b^{n m} \in I$, so $a \in \sqrt{I}$ or $b \in \sqrt{I}$.

