1. Let D be the unit disk and S^1 the unit circle.

(a) Show that if $g : D \rightarrow \mathbb{C}$ is a continuous function and $g_r : S^1 \rightarrow \mathbb{C}$ is defined by $g_r(z) = g(rz)$, then $g_r(z) \rightarrow g(z)$ uniformly for $z \in S^1$ as $r \rightarrow 1^-$.

(b) If $f : S^1 \rightarrow \mathbb{C}$ is a continuous function, define $\tilde{f} : D \rightarrow \mathbb{C}$ by $\tilde{f}(z) = f(z)$ for $z \in S^1$ and $\tilde{f}(re^{i\phi}) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) P_r(\theta - \phi) \, d\theta$. (So the real and imaginary parts of \tilde{f} are harmonic in D.) Define $\tilde{f}_r : S^1 \rightarrow \mathbb{C}$ by $\tilde{f}_r(z) = \tilde{f}(rz)$. Show that for each $r < 1$, there is a sequence $p_n(z, \bar{z})$ of polynomials in z and \bar{z} such that $p_n(z, \bar{z}) \rightarrow \tilde{f}_r(z)$ uniformly for $z \in S^1$. (use Problem 7 of Homework 9.)

(c) **Weierstrass approximation theorem for S^1.** If $f : S^1 \rightarrow \mathbb{C}$ is a continuous function, then there is a sequence $p_n(z, \bar{z})$ of polynomials in z and \bar{z} such that $p_n(z, \bar{z}) \rightarrow f(z)$ uniformly for $z \in S^1$.

2. Find a harmonic function on

(a) the unit disk which has boundary values 0 on the lower semicircle and 1 on the upper semicircle.

(b) the first quadrant which has boundary values 0 on $[0, 1]$ and 1 on $[1, \infty]$ and $[0, i\infty]$.

3. Use Fourier coefficients to solve the Dirichlet problem in the unit disk for the function on $[0, 2\pi] : f(\theta) = -1$ if $\pi/2 < \theta < 3\pi/2$ and 1 otherwise.
4. Suppose that \(f \) is an entire function which sends the real line to the real line and the imaginary line to the imaginary line. Prove that \(f \) is an odd function, i.e. \(f(z) = -f(-z) \). (Hint: We showed that if \(f \) sends real line to real line, then \(f(z) = f(\bar{z}) \). Use a similar argument to show that if \(f \) sends the imaginary line to the imaginary line the \(f \) sends points symmetric with respect to the imaginary axis to points symmetric with respect to imaginary axis.)

5. Suppose that \(f(z) \) is holomorphic on \(|z| \leq 1 \) and satisfies \(|f(z)| = 1 \) if \(|z| = 1 \). Show that \(f(z) \) is a rational function.