1. Compute \(\int_C \frac{2z+1}{z^2+z+1} \, dz \) where \(C \) is the circle \(|z| = 2 \) positively oriented.

2. a) Give an example to show that holomorphic functions do not always map simply connected regions to simply connected regions. b) Suppose that \(U \) a simply connected region, and \(f(z) \) a nowhere vanishing holomorphic function on \(U \). Prove that there is a holomorphic function \(g \) on \(U \) such that \(e^{g(z)} = f(z) \).

3. Show that if 0 is an isolated singular point of \(f \) and \(|f(z)| \leq \frac{1}{|z|^{1/2}} \) near 0, then 0 is a removable singular point of \(f \).

4. Prove that an isolated singularity of \(f(z) \) is removable if \(\text{Re} \ f(z) \) is bounded above or below. (Hint: show that an isolated singularity of \(f(z) \) cannot be a pole of \(e^{f(z)} \).)

5. Suppose \(U \) is a region and \(f \) is holomorphic on \(U \). Let \(z_0 \in U \) and \(f'(z_0) \neq 0 \). Prove that
\[
\frac{2\pi i}{f'(z_0)} = \oint_C \frac{1}{f(z) - f(z_0)} \, dz.
\]
where \(C \) is a small circle around \(z_0 \).

6. Let \(U = \{ z : |z| > R \} \) for a fixed positive number \(R \). We say the function \(f : U \to \mathbb{C} \) has a removable singularity, pole, or essential singularity at infinity if \(f(1/z) \) has a removable, a pole, or essential singularity at 0.

 (a) Prove that an entire function has a removable singularity at infinity if and only if it is a constant.

 (b) Prove that an entire function has a pole of order \(m \) at infinity if and only if it is a polynomial of degree \(m \).

 (c) Show that \(\sin z \) and \(\cos z \) have essential singularities at infinity.