1. Let K be a compact subset of \mathbb{C} and S the set of continuous functions on U which can be approximated uniformly on K by polynomials.

(a) Show that if $f, g \in S$, then $f + g \in S$ and $gf \in S$.

(b) Show that if $f_n \in S$ and f is a function on U such that f_n converges to f uniformly on K, then $f \in S$.

2. Let $U \subset \mathbb{C}$ be a non-empty open set. Show that there is a sequence of compact subsets K_n of U such that $U = \bigcup_n K_n$ and K_n is contained in the interior of K_{n+1} for every $n \geq 1$. (Let K_n be the set of point z in U such that $|z| \leq n$ and the distance between z and the boundary of U is $\geq \frac{1}{n}$.)

3. Use Problem 2 to show that if $U \subset \mathbb{C}$ is an open subset, $\{a_n\}_{n=1}^\infty$ is a sequence of distinct points of U without a limit point in U, and p_n polynomials whose constant coefficients are zero, then there is a meromorphic function f on U such that the poles of f are exactly the a_n and the principal part of f at a_n is $p_n(\frac{1}{z-a_n})$.

4. Show that if f and g are entire functions with no common zeros, then there are entire functions r and s such that $fr + gs = 1$. (Such f and g are called relatively prime.) Hint: Write $\frac{1}{fg} = F + G$ where F only has poles at zeros of f and G has poles only at zeros of g.

5. Let $U \subset \mathbb{C}$ be an open subset, and let $K_n, n \geq 1$, be as in Problem 2. For continuous functions f, g on U, we define $d(f, g)$ as follows: For $n \geq 1$, let

$$
\delta_n(f, g) = \max_{z \in K_n} \frac{|f(z) - g(z)|}{1 + |f(z) - g(z)|},
$$
and

\[d(f, g) = \sum_{n=1}^{\infty} 2^{-n} \delta_n(f, g). \]

(a) Show that \(d \) is a metric on \(C(U) \), the space of continuous functions on \(U \).

(b) Show that \(f_n \to f \) in \((C(U), d) \) if and only if \(f_n \) converges uniformly to \(f \) on all compact subsets of \(U \).