Algebra I

Problem Set 1

Due: September 13 in class

1. Let N be a normal subgroup of a group G. For a subgroup H in G, let

$$\phi(H) = \{hN | h \in H\} \subset G/N.$$

- (a) Show ϕ gives a 1-1 correspondence between subgroups of G which contain N and subgroups of G/N.
- (b) Show that if $N \leq H_1 \leq H_2$, then $H_1 \leq H_2$ if and only if $H_1/N \leq H_2/N$, and in this case $H_2/H_1 \simeq (H_2/N)/(H_1/N).$
- 2. (a) Show that A_5 is simple. (b) Find all the normal subgroups of S_n when $n \ge 5$.
- 3. If $H \leq K \leq G$, then show that [G:H] = [G:K][K:H]. (Do not assume G is finite.)

4. Show that if $n \ge 2$, S_n is generated by the two cycles $\tau = (1 \ 2)$ and $\sigma = (1 \ 2 \ \dots n)$. (Hint: $(i \ i + 1) = \sigma(i - 1 \ i)\sigma^{-1}$)

5. Let G be the subgroup of $GL(2, \mathbb{C})$ generated by

$$A = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

- (a) Show G is of order 8 and is not abelian.
- (b) Show that every subgroup of G is normal.

6. Soppose that G is a finite group, $H \leq G$ and $N \leq G$ such that |H| and [G : N] are relatively prime. Show that $H \leq N$.

7. Let G be a group. For x, y in G the *commutator* of x and y is

$$[x, y] = xyx^{-1}y^{-1}.$$

Let G' be the subgroup of G generated by all the commutators.

- Show $[x,y]^{-1} = [y,x]$ and $G' = \{[x_1,y_1] \dots [x_m,y_m] | x_i, y_i \in G\}.$
- Show $G' \trianglelefteq G$ and G/G' is abelian.
- Set $G^{(0)} = G$, and $G^{(i)} = (G^{(i-1)})'$ for $i \ge 1$. Show G is solvable if and only if $G^{(m)} = \{e\}$ for some $m \ge 0$.