Algebra I, Fall 2016

Problem Set 10

Due: December 8 in class

1. Let K be a field, and let K(t) be the field of rational functions in one variable t over K. Show that if an element $\alpha \in K(t)$ is algebraic over K, then $\alpha \in K$.

2. Find the splitting fields of the following polynomials over \mathbf{Q} , and find the degree of such splitting fields over \mathbf{Q} .

- (i) $x^2 2$
- (ii) $x^3 2$
- (iii) $x^2 + x + 1$

3. Let K be a finite or countable field. Show that the algebraic closure of K has countably many elements.

4. Let F be a field of characteristic p (p a prime number) such that every polynomial in F[x] is separable. Show that for every $a \in F$, there is $b \in F$ such that $a = b^p$. (Hint: look at the polynomial $f(x) = x^p - a$. Show that if there is no such b, then f(x) is irreducible and nonseparable.)