Algebra I, Fall 2016

Problem Set 5
Due: October 13 in class

In all the following questions, R and S are assumed to be a commutative ring.

1. If $f: R \rightarrow S$ is a ring homomorphism. Prove the following.
(a) If P is a prime ideal of S, then $f^{-1}(P)$ is either equal to R a prime ideal of R.
(b) If P is a maximal ideal of S, then $f^{-1}(P)$ is not necessarily a maximal ideal of R.
2. For an ideal I of R, let

$$
\sqrt{I}=\left\{x \in R \mid x^{n} \in I \text { for some } n \geq 1\right\} .
$$

\sqrt{I} is called the radical of I.
(a) Show that \sqrt{I} is an ideal of R which contains I.
(b) Show that $\sqrt{I J}=\sqrt{I \cap J}$ for any two ideals I and J.
(c) Give an example such that $I J \neq I \cap J$.
3. Let S a multiplicative subset of R not containing 0 , and let $\phi: R \rightarrow S^{-1} R$ be the $\operatorname{map} \phi(r)=\frac{r}{1}$. For an ideal I in R, let

$$
S^{-1} I=\left\{\left.\frac{i}{s} \right\rvert\, i \in I, s \in S\right\} \subset S^{-1} R
$$

(a) Show that $S^{-1} I$ is an ideal of $S^{-1} R$, and $S^{-1} \phi^{-1}(J)=J$ for any ideal J of $S^{-1} R$.
(b) Show the map $P \mapsto S^{-1} P$ gives a one-to-one correspondence between prime ideals of R whose intersection with S is empty and prime ideals of $S^{-1} R$.
4. Show that in every finite commutative ring, every prime ideal is maximal.
5. (Lang II.4, Question 1) Let S be a multiplicative subset of R not containing 0 . Let P be a maximal element in the set of ideals of R whose intersection with S is empty. Show that P is a prime idea.
6. A proper ideal I of R is said the be a primary ideal if $a b \in I$ implies $a \in I$ or $b^{n} \in I$ for some positive integer n.
(a) Find all the primary ideals of \mathbf{Z}.
(b) Show that if I is a primary ideal, then \sqrt{I} is a prime ideal.

