Algebra I, Fall 2016

Problem Set 6
Due: October 20 in class

1. (Lang, II.3) Let A be a PID and S a multiplicative subset not containing 0 . Show $S^{-1} A$ is a PID.
2. (Lang, II.4) Let A be a UFD and S a multiplicative subset not containing 0 . Show $S^{-1} A$ is a UFD and that the prime elements of $S^{-1} A$ are of the form $u p$ where u is a unit in $S^{-1} A$ and p is a prime element in A such that $(p) \cap S=\emptyset$.
3. (Lang, II.7) Suppose R is a PID and a_{1}, \ldots, a_{n} are non-zero elements of R. Let $\left(a_{1}, \ldots, a_{n}\right)=(d)$. Show d is the greatest common divisor of the a_{i}. (so it divides each a_{i}, and if c divides each a_{i}, then c divides d.)
4. Show the subring $\mathbf{Z}[2 i]=\{a+2 b i \mid a, b \in \mathbf{Z}\}$ of the Guassian integers is not a UFD by showing $4=2 \cdot 2=(-2 i) \cdot(2 i)$ gives two factorization of 4 into product of irreducible elements.
5. Let $R=\mathbf{Z}[i]$ and $d(a+b i)=a^{2}+b^{2}$. Let $\alpha=11+3 i$ and $\beta=1+8 i$.
(1) Write $\alpha=\beta q+r$ in R with $d(r)<d(\beta)$ using the method we discussed in class.
(2) Find the gcd of α and β by showing $\operatorname{gcd}(\alpha, \beta)=\operatorname{gcd}(\beta, r)$, dividing β by r, and continuing the process until the remainder is zero. (this is the Euclidean algorithm)
