Algebra I, Fall 2016

Problem Set 7

Due: November 10 in class

1. Using Eisenstein critetrion show that the polynomials $x^{4}+1$ and $x^{6}+x^{3}+1$ are irreducible over the field of rational numbers (Hint: change x to $x+1$).
2. Dual Modules: Let R be a commutative ring, and let M be a module over R. Define the dual of M denoted by $M^{\vee}=\operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{R})$ to be the set of all R-module homormorphisms from M to R.
(i) Show that M^{\vee} is an R-module.
(ii) Show that $(M \oplus N)^{\vee}$ is isomorphic to $M^{\vee} \oplus N^{\vee}$.
3. (Lang III, 9) Let R be a commutative ring, and let M be a R-module. Let S be a multiplicative subset of R such that $1 \in S$ and $0 \notin S$. Consider the set of all $\{(m, s), m \in M, s \in S\}$, and show that the relation

$$
\left(m_{1}, s_{1}\right) \sim\left(m_{2}, s_{2}\right) \text { if there is } s \in S \text { such that } s\left(s_{2} m_{1}-s_{1} m_{2}\right)=0
$$

is an equivalence relation. Denote the class of (m, s) by $\frac{m}{s}$, and set

$$
S^{-1} M=\{(m, s), m \in M, s \in S\} / \sim
$$

(i) Show that $S^{-1} M$ is a module over $S^{-1} R$.
(ii) If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of R-modules, show that $0 \rightarrow S^{-1} M^{\prime} \rightarrow S^{-1} M \rightarrow S^{-1} M^{\prime \prime} \rightarrow 0$ is an exact sequence of $S^{-1} M$-modules.
4. (Lang III, 15) The five lemma. Let R be a commutative ring, and consider a
commutative diagram of R-modules such that every row is exact

(i) If f_{1} is surjective and f_{2} and f_{4} are injective, then f_{3} is injective.
(ii) If f_{5} is injective and f_{2} and f_{4} are surjective, then f_{3} is surjective.

