Algebra I, Fall 2016

Problem Set 7

Due: November 10 in class

1. Using Eisenstein criterion show that the polynomials $x^4 + 1$ and $x^6 + x^3 + 1$ are irreducible over the field of rational numbers (Hint: change x to x + 1).

2. Dual Modules: Let R be a commutative ring, and let M be a module over R. Define the *dual* of M denoted by $M^{\vee} = \operatorname{Hom}_{\mathbb{R}}(\mathbb{M}, \mathbb{R})$ to be the set of all R-module homormorphisms from M to R.

- (i) Show that M^{\vee} is an *R*-module.
- (ii) Show that $(M \oplus N)^{\vee}$ is isomorphic to $M^{\vee} \oplus N^{\vee}$.

3. (Lang III, 9) Let R be a commutative ring, and let M be a R-module. Let S be a multiplicative subset of R such that $1 \in S$ and $0 \notin S$. Consider the set of all $\{(m, s), m \in M, s \in S\}$, and show that the relation

 $(m_1, s_1) \sim (m_2, s_2)$ if there is $s \in S$ such that $s(s_2m_1 - s_1m_2) = 0$

is an equivalence relation. Denote the class of (m, s) by $\frac{m}{s}$, and set

$$S^{-1}M = \{(m,s), m \in M, s \in S\} / \sim$$

(i) Show that $S^{-1}M$ is a module over $S^{-1}R$.

- (ii) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of *R*-modules, show that $0 \to S^{-1}M' \to S^{-1}M \to S^{-1}M'' \to 0$ is an exact sequence of $S^{-1}M$ -modules.
- 4. (Lang III, 15) The five lemma. Let R be a commutative ring, and consider a

commutative diagram of *R*-modules such that every row is exact

- (i) If f_1 is surjective and f_2 and f_4 are injective, then f_3 is injective.
- (ii) If f_5 is injective and f_2 and f_4 are surjective, then f_3 is surjective.