Algebra I, Fall 2016

Problem Set 8
Due: November 17 in class

In all questions R is a commutative ring.

1. Let

$$
M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be a sequence of R-modules. Show that if

$$
0 \rightarrow \operatorname{Hom}\left(\mathrm{M}^{\prime \prime}, \mathrm{P}\right) \rightarrow \operatorname{Hom}(\mathrm{M}, \mathrm{P}) \rightarrow \operatorname{Hom}\left(\mathrm{M}^{\prime}, \mathrm{P}\right)
$$

is exact for every R-module P, then the sequence itself is exact.
2. Let R be a commutative ring and Q a module over R. Show that the following are equivalent:
(a) If M is an R-module, if M^{\prime} is a submodule of M, and if $f: M^{\prime} \rightarrow Q$ is a R homomorphism, then there is an extension of f to a R-homomorphism $M \rightarrow Q$, i.e., there is a R-homomorphism $h: M \rightarrow Q$ such that the following diagram is commutative

(b) For any short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$, the sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}^{\prime \prime}, \mathrm{Q}\right) \rightarrow \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{Q}) \rightarrow \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}^{\prime}, \mathrm{Q}\right) \rightarrow 0
$$

is exact.
(c) Every short exact sequence $0 \rightarrow Q \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ splits.

If the above equivalent conditions are satisfied, the module Q is called an injective module.
3. Use Zorn's lemma to show that \mathbf{Q} is an injective \mathbf{Z}-module. (Hint: Let $N \rightarrow M$ be an injective homomorphism of abelian groups, and let $g: \mathbf{Q} \rightarrow N$ be a group homomorphism. Identifying N with its image, we can consider N as subgroup of M. Consider now the set of all pairs (H, ϕ) where H is a subgroup of M containing N and $\phi: \mathbf{Q} \rightarrow H$ is a group homomorphism extending g. Show that this set has a maximal element, and that the maximal element has to be of the form (M, ϕ) for some ϕ.)
4. (a) Let I, J be ideals of R. Show

$$
R / I \otimes_{R} R / J \cong R /(I+J) .
$$

(b) Show $\mathbf{Z}_{n} \otimes \mathbf{Z} \mathbf{Z}_{m} \cong \mathbf{Z}_{d}$ where $d=\operatorname{gcd}(m, n)$.

