Algebra I, Fall 2016

Problem Set 9
Due: December 1 in class

In all questions R is a commutative ring.

1. Let M be a R-module and $I \subset R$ an ideal. Show that

$$
\frac{M}{I M} \simeq M \otimes_{R} \frac{R}{I}
$$

as $\frac{R}{I}$-modules.
2. Let R be a PID, and p a prime element in R. Assume that M is a finitely generated R-module such that for every $m \in M, p^{s} m=0$ for some $s \geq 0$.
(a) Let $M=<m_{1}, \ldots, m_{k}>$ and let s_{i} be the smallest integer such that $p^{s_{i}} m_{i}=0$. Assume $s_{1} \geq \cdots \geq s_{k}$. Let $N=<m_{1}>$. Show that every element $x+N$ of M / N can be lifted to an element $y \in M$ (so $y+N=x+N$) with the property that $p^{r} y=0$ if and only if $p^{r}(y+N)=0$.
(b) Show that M can be written as a direct sum

$$
M \simeq M_{1} \oplus \cdots \oplus M_{n}
$$

of R-modules such that each M_{i} is generated by one element. (Hint: Use induction on the number of a set of generators and follow the argument in class).
3. Let R be a PID, and let M be a finitely generated torsion R-module. For $a \in R$, set

$$
M_{a}=\{m \in M \mid a m=0\} .
$$

(i) Show that if $m \in M$, and if $a m=0$ and $b m=0$, then $\operatorname{gcd}(a, b) m=0$. (use the fact that $\operatorname{gcd}(a, b)$ can be written as a linear combination of a and b.)
(ii) Show that If $a=b c$ and $\operatorname{gcd}(b, c)=1$, then

$$
M_{a}=M_{b} \oplus M_{c} .
$$

(iii) Let $p \in R$ be a prime element. If $m \in M_{p^{n}}, n \geq 1$, then show that $<m>$, the sudmodule generated by m, is isomorphic to $R /\left(p^{s}\right)$ for some $s \leq n$, where (p^{s}) is the ideal generated by p^{s}.
(iv) Use parts (i)-(iii) and Question 2 to show that

$$
M \simeq R /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus R /\left(p_{s}^{n_{s}}\right)
$$

for some prime elements $p_{i} \in R$ and positive integers n_{i}.
4. Let F be a field and $E=F(\alpha)$ where α is algebraic of odd degree over F. (So $[F(\alpha): F]$ is odd.) Show that $E=F\left(\alpha^{2}\right)$.

