Algebra I, Fall 2016

Solutions to Problem Set 6

1. We know from Problem Set 5, Questions 5(a) that every ideal J of $S^{-1} A$ is of the form $S^{-1} I$ for an ideal I of A. Since A is a PID, I is generated by an element a, so J is generated by $\frac{a}{1}$.
2. First note that if a is a nonzero element in A, then $\frac{a}{1}$ is a unit in $S^{-1} A$ if and only if $(a) \cap S \neq \emptyset$: if $s \in(a)$, then $s=a x$, then $\frac{a}{1} \frac{x}{s}=1$; and conversely if $\frac{a}{1} \frac{x}{s}=1$, then $x a \in(a) \cap S$.

We now prove the second statement. If p is a prime in A such that $(p) \cap S=\emptyset$, then $\frac{p}{1}$ is non-unit, and if $\frac{a}{s_{1}} \frac{b}{s_{2}} \in\left(\frac{p}{1}\right)$, then

$$
\frac{a}{s_{1}} \frac{b}{s_{2}}=\frac{x}{s} \frac{p}{1},
$$

so $a b s=s_{1} s_{2} x p$, so $p \mid a b s$, so $p \mid a$ or $p \mid b$ or $p \mid s$. But p cannot divide s since then $(p) \cap S \neq \emptyset$. If $p \mid a$, then $a=a^{\prime} p$, so $\frac{p}{1} \frac{a^{\prime}}{s_{1}}=\frac{a}{s_{1}}$, so $\frac{p}{1}$ divides $\frac{a}{s_{1}}$. Similarly if $p \mid b$ then $\frac{p}{1}$ divides $\frac{b}{s_{2}}$. So $\frac{p}{1}$ is a prime element, and the same is true for any associate of p in $S^{-1} A$.

Conversely if $\frac{a}{s}$ is prime, and $a=p_{1} \ldots p_{k}$ is the prime factorization of a in A, then exactly for one $i,\left(p_{i}\right) \cap S \neq \emptyset$ since $\frac{a}{s}$ is prime and therefore irreducible, and

$$
\frac{a}{s}=\frac{1}{s} \frac{p_{1}}{1} \ldots \frac{p_{r}}{1} .
$$

($\left(p_{i}\right) \cap S$ cannot be non-empty for all i since in this case $\frac{a}{s}$ would be unit.) Note that what we actually proved here is that if $\frac{a}{s}$ is irreducible in $S^{-1} A$, then $\frac{a}{s}=u \frac{p}{1}$ where u is a unit in $S^{-1} A$ and p is a prime in A.

Note that if $\frac{a}{s}$ is irreducible in $S^{-1} A$, then it follows from the above argument that $\frac{a}{s}=u_{1}^{p}$ where u is a unit in $S^{-1} A$ and p is prime in A, so again by the above argument $\frac{p}{1}$ is prime in $S^{-1} A$. so $\frac{a}{s}$ is a prime element.

To show $S^{-1} A$ is a UFD, the uniqueness of factorization follows by the argument in class since we know every irreducible element in $S^{-1} A$ is a prime element. So it is enough to show a factorization to product of irreducible elements exists. If $\frac{a}{s}$ is a non-unit element, and if $a=p_{1} \ldots p_{r}$ is a factorization of a as a product of irreducible (and hence prime) elements in A, then

$$
\frac{a}{s}=\frac{p_{1}}{s} \frac{p_{2}}{1} \ldots \frac{p_{r}}{1}
$$

and it follows from the first part of the proof that each $\frac{p_{i}}{1}$ and $\frac{p_{1}}{s}$ are prime and therefore irreducible in $S^{-1} A$.
4. Let $N(a+2 b i)=a^{2}+4 b^{2}$. We show that every element $z \in \mathbf{Z}[2 i]$ with $N(z)=4$ is irreducible, and therefore $2,2 i$ and $-2 i$ are irreducible. Since N is multiplicative (it is just the complex modules), if $N(z)=4$ and $z=z_{1} z_{2}$, then $N\left(z_{1}\right) N\left(z_{2}\right)=4$. since $a^{2}+2 b^{2}$ cannot be equal to 2 for integers a and $b, N\left(z_{1}\right)=1$ or $N\left(z_{2}\right)=1$, so $z_{1}= \pm 1$, or $z_{2}= \pm 1$, so z_{1} is a unit, or z_{2} is a unit.

Next notice that the only units of $\mathbf{Z}[2 i]$ are ± 1, and so 2 and $2 i$ are not associates, and 2 and $-2 i$ are not associates, so $4=2 \cdot 2=(2 i) \cdot(-2 i)$ gives two different factorization of 4 into product of irreducible elements.
5. We saw in class that to divide $y=a+b i$ by a positive number n we first divide a by n, and write $a=n q_{1}+r_{1}$ such that $\left|r_{1}\right| \leq n / 2$, and then divide b by n and write $b=n q_{2}+r_{2}$ such that $\left|r_{2}\right| \leq n / 2$. Then $a+b i=n\left(q_{1}+i q_{2}\right)+\left(r_{1}+i r_{2}\right)$ and $N\left(r_{1}+i r_{2}\right)<N(n)=n^{2}$.

We also saw that to divide $y=a+i b$ by $x=c+i d$, we set $n=N(c+d i)=x \bar{x}$, and divide $y \bar{x}$ by $n: y \bar{x}=q n+r$, and then

$$
y=q x+(y-q x)
$$

so the remainder r is $y-q x$.
So to divide $\alpha=11+3 i$ by $\beta=1+8 i$, we divide $\alpha \bar{\beta}=(11+3 i)(1-8 i)=35-85 i$ by $n=(1+8 i)(1-8 i)=65$. Since $35=65 \cdot 0+35$ and $-85=65 \cdot(-1)-20$, we get $q=0-i$, so

$$
11+3 i=(-i)(1+8 i)+(3+4 i)
$$

Since $\operatorname{gcd}(11+3 i, 1+8 i)=\operatorname{gcd}(1+8 i, 3+4 i)$, we divide $1+8 i$ by $3+4 i$ using the same method: $(1+8 i)(3-4 i)=35+20 i$, and if we divide $35+20 i$ by $N(3+4 i)=25$, we get

$$
35+20 i=(1+i) 25+(10-5 i)
$$

so $q=1+i$ and so if we divide $1+8 i$ by $3+4 i$, we get

$$
1+8 i=(1+i)(3+4 i)+(2+i)
$$

And similarly

$$
3+4 i=(2+i)(2+i)+0
$$

So

$$
\operatorname{gcd}(11+3 i, 1+8 i)=\operatorname{gcd}(1+8 i, 3+4 i)=\operatorname{gcd}(3+4 i, 2+i)=2+i .
$$

Note that the units of the ring are $1,-1, i,-i$, so $-1+2 i, 1-2 i$, and $-2-i$ are also possible answers.

