
Algebra I, Fall 2016

Solutions to Problem Set 6

1. We know from Problem Set 5, Questions 5(a) that every ideal J of S−1A is of the
form S−1I for an ideal I of A. Since A is a PID, I is generated by an element a, so
J is generated by a

1 .

2. First note that if a is a nonzero element in A, then a
1 is a unit in S−1A if and only

if (a) ∩ S 6= ∅: if s ∈ (a), then s = ax, then a
1
x
s = 1; and conversely if a

1
x
s = 1, then

xa ∈ (a) ∩ S.
We now prove the second statement. If p is a prime in A such that (p) ∩ S = ∅,

then p
1 is non-unit, and if a

s1
b
s2
∈ (p1), then

a

s1

b

s2
=
x

s

p

1
,

so abs = s1s2xp, so p|abs, so p|a or p|b or p|s. But p cannot divide s since then
(p) ∩ S 6= ∅. If p|a, then a = a′p, so p

1
a′

s1
= a

s1
, so p

1 divides a
s1

. Similarly if p|b then
p
1 divides b

s2
. So p

1 is a prime element, and the same is true for any associate of p in

S−1A.
Conversely if a

s is prime, and a = p1 . . . pk is the prime factorization of a in A,
then exactly for one i, (pi) ∩ S 6= ∅ since a

s is prime and therefore irreducible, and

a

s
=

1

s

p1
1
. . .

pr
1
.

((pi)∩S cannot be non-empty for all i since in this case a
s would be unit.) Note that

what we actually proved here is that if a
s is irreducible in S−1A, then a

s = up
1 where

u is a unit in S−1A and p is a prime in A.
Note that if a

s is irreducible in S−1A, then it follows from the above argument
that a

s = up
1 where u is a unit in S−1A and p is prime in A, so again by the above

argument p
1 is prime in S−1A. so a

s is a prime element.
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To show S−1A is a UFD, the uniqueness of factorization follows by the argument
in class since we know every irreducible element in S−1A is a prime element. So it
is enough to show a factorization to product of irreducible elements exists. If a

s is a
non-unit element, and if a = p1 . . . pr is a factorization of a as a product of irreducible
(and hence prime) elements in A, then

a

s
=
p1
s

p2
1
. . .

pr
1

and it follows from the first part of the proof that each pi
1 and p1

s are prime and
therefore irreducible in S−1A.

4. Let N(a + 2bi) = a2 + 4b2. We show that every element z ∈ Z[2i] with N(z) = 4
is irreducible, and therefore 2, 2i and −2i are irreducible. Since N is multiplicative
(it is just the complex modules), if N(z) = 4 and z = z1z2, then N(z1)N(z2) = 4.
since a2 + 2b2 cannot be equal to 2 for integers a and b, N(z1) = 1 or N(z2) = 1, so
z1 = ±1, or z2 = ±1, so z1 is a unit, or z2 is a unit.

Next notice that the only units of Z[2i] are ±1, and so 2 and 2i are not associates,
and 2 and −2i are not associates, so 4 = 2 · 2 = (2i) · (−2i) gives two different
factorization of 4 into product of irreducible elements.

5. We saw in class that to divide y = a + bi by a positive number n we first divide
a by n, and write a = nq1 + r1 such that |r1| ≤ n/2, and then divide b by n and
write b = nq2 + r2 such that |r2| ≤ n/2. Then a + bi = n(q1 + iq2) + (r1 + ir2) and
N(r1 + ir2) < N(n) = n2.

We also saw that to divide y = a+ ib by x = c+ id, we set n = N(c+ di) = xx̄,
and divide yx̄ by n: yx̄ = qn+ r, and then

y = qx+ (y − qx)

so the remainder r is y − qx.
So to divide α = 11+3i by β = 1+8i, we divide αβ̄ = (11+3i)(1−8i) = 35−85i

by n = (1 + 8i)(1− 8i) = 65. Since 35 = 65 · 0 + 35 and −85 = 65 · (−1)− 20, we get
q = 0− i, so

11 + 3i = (−i)(1 + 8i) + (3 + 4i)

Since gcd(11 + 3i, 1 + 8i) = gcd(1 + 8i, 3 + 4i), we divide 1 + 8i by 3 + 4i using the
same method: (1+8i)(3−4i) = 35+20i, and if we divide 35+20i by N(3+4i) = 25,
we get

35 + 20i = (1 + i)25 + (10− 5i)
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so q = 1 + i and so if we divide 1 + 8i by 3 + 4i, we get

1 + 8i = (1 + i)(3 + 4i) + (2 + i)

And similarly
3 + 4i = (2 + i)(2 + i) + 0

So
gcd(11 + 3i, 1 + 8i) = gcd(1 + 8i, 3 + 4i) = gcd(3 + 4i, 2 + i) = 2 + i.

Note that the units of the ring are 1,−1, i,−i, so −1 + 2i, 1− 2i, and −2− i are also
possible answers.
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